




























































Chapter 7
Diversity and Classification of Rare
Actinomycetes

Anil Kumar S Katti, Shilpa AK, and Sulochana B Mudgulkar

Abstract Rare groups of actinobacterial species are widely distributed in soil and
water habitats. Even though soil consists of enormous actinobacteria, they can also
be isolated from water, plants, sediments, limestone quarry, and animals. In any
environment, various factors like physicochemical and biochemical reactions define
the diversity and distribution. Environmental parameters such as soil type, soil
conductivity, humus content, and characteristics of the humic acid content also
affect the soil microbial community. One of the significant ways to explore rare
actinomycetes lies in sampling the underexplored or unexplored environments, and
these habitats provide unparalleled chemical diversity and potential novel commu-
nities. Several environments are yet to be explored to determine the productive types
of rare actinobacteria. Recognition of unusual environments is crucial in isolating
different groups of rare actinobacteria, and understanding the complex ecological
interactions among these microbes is to be defined. There has been a significant
advancement in isolation, identification, and characterization of the bioactive pro-
ducing rare Actinomycetes gaining more importance.

Keywords Rare actinobacteria · Diversity · Distribution · Classification · Ecological
study · Identification

7.1 Diversity of Rare Actinomycetes

Rare actinobacteria are generally classified as strains other than Streptomyces (Berdy
2005). The frequency of isolation of actinobacterial strains under normal parameters
is significantly less (Baltz 2006). Compared to Streptomyces, the growth of
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non-Streptomyces is usually slow and requires very complicated procedures for
isolation, cultivation, and preservation in some genera (Lazzarini et al. 2000).
Terrestrial and aquatic ecosystems harbor a wide variety of rare Actinomycetes, but
the primary habitat of rare Actinomycetes is soil. These organisms were also isolated
from various niches such as sediments, stones, water, plants, and animals (Groth
et al. 1999). The rare Actinomycetes diversity and distribution in individual habitat
are affected by several physicochemical parameters that are soil type pH, humus
type, and humus content (Tiwari and Gupta 2013). The rare Actinobacteria genera
isolated by the research team from Egypt include Micromonospora, Actinoplanes,
and Actinomadura from Egypt soil samples (Abd-allah et al. 2012). Another report
confirmed the rare Actinobacteria isolated from Trondheim Fjord [Norway] of
shallow-water sediments including Actinocorallia, Actinomadura,
Micromonospora, Glycomyces, Nocardia, Nocardiopsis, Pseudonocardia,
Streptosporangium, Nonomuraea, and genera of Rhodococcus (Bredholdt et al.
2007). Rare Actinobacteria biodiversity belongs to the genera Micromonospora
reported in Lake Baikal’s water (Terkina et al. 2002). Rare Actinobacteria can
sustain their lives in extreme ecological habitats, such as caves with high relative
humidity, low amounts of organic nutrients, high mineral concentrations, and low
temperatures. The genera of Nocardia and Micromonospora were isolated from El
Gola cave, Sinai, Egypt (Mansour 2003). Besides, the Altamira Cave, Cantabria,
Spain, was the source of Nocardia altamirensis (Jurado et al. 2008). The extreme
drought condition of hyper-arid deserts is often associated with lower water activity,
excessive radiation, and high-temperature conditions (Horikoshi et al. 2011). The
isolation of Micromonospora and Kribbella genera from the Sinai Desert, Egypt,
was reported by Amin et al. (Tolba et al. 2013). The rare Actinomycetes physiology
and genetics were poorly understood, while the discovery of these microorganisms
may lead to the isolation of novel chemicals (Tiwari and Gupta 2012b). According to
the previous reports, the actinobacteria were also isolated from very soil layers, but it
decreases gradually with an increase of depth (Takahashi and Omura 2003).

7.2 Rare Actinomycetes from the Soil

Actinomycetes can be seen abundantly in all soil types around the globe, such as
desert alkaline soil, salt pans, and snowcaps (Agarwal and Mathur 2016).

The rhizosphere soil samples from Madhya Pradesh, India, can be considered
important sources for the bioactive pigment-producing Actinomycetes (Parmar and
Singh 2018). An excellent producer of extracellular xylanases by a moderately
thermotolerant Streptomyces atrovirens subspecies [strain WJ-2] was isolated from
Jeju Island, Korea soil sample (Kim et al. 2016).

The total number of Actinomycetes of 1191 was isolated selectively from 10 dif-
ferent soil samples obtained from five regions of Egyptian Governorates, including
Qalubiya, Giza, Alexandria, Asuit, and Sinai. The types of soil samples collected
from various places in Egypt were sandy, clay, cultivated, and uncultivated soils.
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The soil samples numbered 2, 3, 6, 8, 9, and 10 were clay cultivated soil, while those
numbered 4, 5, and 7 were sandy soil. The collected soil samples represented that the
diversity of rare Actinomycetes genera was distributed throughout the study area.
The site number 1 recorded highest value of genera diversity, which was followed by
sites numbered 2, 3, 5, and 9. The less diversity in genera has occurred on site 7. To
enhance the non-streptomycete Actinomycetes isolation from the soil sample,
increase their relative number on the agar plates, and inhibit the fungal and bacterial
competition, different types of selective pretreatments and antibiotics are used which
act as a selective condition (Hayakawa 2008). The clay uncultivated soil
[170,000 CFU/g soil] found in site number 1 showed highest count of rare Actino-
mycetes followed by sites numbered 9, 8, 3, 6, and 2, while the lowest population of
35,000 CFU/g soil was recorded in sites 10 and 5. The soil sample obtained from site
7 [Barmine cave, sandy soil] showed no rare Actinomycetes. The high concentration
of salts and ions may be the reason for this (Abd-allah et al. 2012). Hozzein et al.
(2008) studies found that with the increase in the concentration of salts and ions in
the soil, the rare Actinomycetes colony count decreases. The sandy soil has a lower
population of rare Actinomycetes than clay soil. This can be due to environmental
factors such as dryness, higher temperature, root exudates, physical parameters of
soil particles, and the absence or presence of root exudates in the rhizosphere
(Xu et al. 1996). The high diversity of rare Actinomycetes was found in uncultivated
soil than cultivated soil and hugely affected by soil properties. According to Tolba
et al. (2002), in uncultivated soil the diversity increases more than in the current
orchards and apple soil. The most diverse group of microorganisms are found in
equilibrated, stabilized biotopes as stated by Burges and Raw (Burges and Raw
1967). This view showed that the organisms of the rhizosphere should be less
differentiated than that of root-free soil because the rhizosphere is subjected to
root secretions effect and the antagonistic type interactions among microorganisms
which lead to dominancy of the selected group of microorganisms. From the sandy,
cultivated, and uncultivated clay soil, the members of the genus Micromonospora
and Actinomadura were isolated. In contrast, from cultivated and wild clay soil,
organisms of genus Actinoplanes were isolated. As the desert temperature reaches
70 �C during the day, Actinoplanes sporangia cannot show resistance to desiccation,
and so only genera Nocardioides of high temperature were isolated from sandy soil.
From uncultivated clay soil, the genus Saccharomonospora was finally isolated.

7.3 Rare Actinomycetes from Aquatic Environments

As physicochemical parameters such as pH, temperature, salinity, and nutrient loads
vary in aquatic environments, the distribution of inhabiting microbial communities
also vary (El-Gayar et al. 2017). Actinomycetes are predominant in habitats like
lakes, rivers, and marine (Subramani and Aalbersberg 2013).

7 Diversity and Classification of Rare Actinomycetes 119



7.3.1 Freshwater Environments

The water and mud from freshwater lakes are the natural sources for a large number
of indigenous Micromonospora; 10–50% can be isolated from lake sediments of the
total population of microbial inhabitants in lake water. About 15% of
Micromonospora out of 3300 bacteria per mL were from Nebish Lake, and 3600
bacteria per mL with 16% Micromonospora from Crystal Lake were reported. The
aquatic environments are the indigenous inhabitant of the representatives belonging
to Thermoactinomyces, Streptomyces, and Rhodococcus (Cross 1981). Xu and Jiang
contemplated populations of Actinomycete from 12 lakes. They found that the
Micromonospora was the dominant genus at the central plateau of Yunnan, China,
that revealed 39–89% of Actinomycetes in the sediments of the above lakes (Xu and
Jiang 1996). Moreover, the second most abundantly found genus in the sediments of
the lake was Streptomyces. Lake sediments likewise have been accounted for
members of rare genera such as Actinomadura, Micropolyspora, Actinoplanes,
Microbispora, Nocardia, Microtetraspora, Rhodococcus, Saccharomonospora,
Mycobacterium, Nocardiopsis, Promicromonospora, Streptosporangium,
Thermoactinomyces, Thermomonospora, Saccharopolyspora, and
Thermopolyspora (Xu and Jiang 1996). Many researchers declared the occurrence
ofMicromonospora in rivers and lake sediments.Micromonospora plays a vital role
in the turnover of lignin, cellulose, and chitin (Chavan et al. 2013). Ten Actinomy-
cetes were isolated from an estuary in India; out of which five were chosen for
secondary metabolite screening and reported important antibacterial activity against
Proteus mirabilis and Enterobacter aerogenes. The selected Streptomyces sp. ES2
demonstrated potent activity against elected microbes (Al-Ansaria et al. 2019). The
rare aquatic Actinomycetes were good candidates for exploring new bioactive mol-
ecules isolated from Fetzara Lake (Benhadj et al. 2018). The sediments from shrimp
ponds are an excellent resource for the isolation of promising Actinomycetes (Aly
et al. 2019).

7.3.2 Marine Environments

The marine environments have several distinct habitats, including seagrass beds,
numerous fish species, mangroves, salt pans, coral reefs, salt marshes, and various
communities of microbes (Abdelfattah et al. 2016). Many natural habitats that are
underexplored can be considered as an important source for the isolation of rare
Actinomycetes (Tiwari and Gupta 2012a). Recently unexplored marine environ-
ments have currently become a prevalent research area due to the presence of
enormous resources. The latest report (Stach and Bull 2005) of the deep-sea sedi-
ments microbial diversity has shown that they might possess greater than 1300
diverse actinobacterial taxonomic units and are expected to represent a high per-
centage of novel genera and species. As compared to terrestrial soils, sea sediments
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consist of a lesser amount of easily available organic material, with more chitin and
cellulose as carbon sources occurring in intricate form. On the other hand, the
culture-independent studies revealed that the sea sediment ecosystem contains
Actinomycetes of broad diversity and various distinctive taxa, which highly differ
from their terrestrial counterparts (Stach et al. 2003). Besides, according to culture-
dependent studies, marine Actinomycetes are found to be ubiquitous in marine
sediments (Jensen et al. 2005). In 2005, seawater-obligate marine Actinomycete
species was isolated, which belongs to genera Salinispora (Maldonado et al.
2005); and which was further led by the finding of following genera such as
Solwaraspora, Demequina, Marinispora, Marinactinospora, Lamerjespora,
Aeromicrobium, Salinibacterium, Serinicoccus, Sciscionella, and Williamsia. In
marine habitats, rare Actinomycetes are extensively present (Subramani and
Aalbersberg 2012). In addition, until now, very few marine obligate species were
isolated (Goodfellow 2010). The habitats such as seawater, marine sediments,
symbiotic and mangrooves deep sea sediments (Emery 1969) covered 63.5% of
the earth’s surface and denotes under explored marine habitat (Butman and Calton
1995). The very first obligatory marine Actinomycetes belonged to the novel genus
Salinispora (Maldonado et al. 2005) was described and then documented due to its
strict prerequisite of seawater for growth and development. Another marine
actinobacterial genus Sciscionella that can withstand growth in up to 13% of high
salt concentrations was described by Tian et al. (2009). To date, marine milieu has
been used for the identification of more than 14 new actinobacterial genera
(Goodfellow and Fiedler 2010; Kurahashi et al. 2010; Chang et al. 2011). Marine
ecosystems have become an obvious essential indigenous microflora for
Actinomycetes.

From 2007 to 2013, from sea sediments, overall 38 new rare Actinomycete taxa
were identified, belonging to 15 varied actinomycete families. Of these, nine unique
genera, such as Sciscionella, Actinotalea, Marisediminicola, Spinactinospora,
Miniimonas, and Demequina, persisted and were reported. In marine sediments,
the reported families in that period were Nocardioidaceae [4 novel species],
Propionibacteriaceae [3 novel species], Streptosporangiaceae [1 novel species],
Pseudonocardiaceae [5 novel species], Nocardiopsaceae [2 novel species],
Promicromonosporaceae [2 novel species], Intrasporangiaceae [2 novel species],
Micrococcineae [suborder] [5 novel species], Nocardiaceae [2 novel species],
Cellulomonadaceae [1 novel species], Beutenbergiaceae [1 novel species],
Micrococcaceae [2 novel species], Micromonosporaceae [5 novel species],
Microbacteriaceae [2 novel species], and Geodermatophilaceae [1 novel species].
The cultivable types of microbes from marine sediments [0.25%] are substantially
greater than seawater [0.001–0.10%] (Amann et al. 1995). From 2007 to 2013, a
total of 11 novel, uncommon Actinomycete spp. belonging to 6 varied Actinomycete
families were described from marine water. Among them Ornithinibacter,
Marihabitans, and Oceanitalea were the three new genera described in seawater.
The families reported between 2007 and 2013 in seawater were Nocardioidaceae
[4 novel species], Intrasporangiaceae [2 novel species], Micrococcaceae [2 novel
species], Propionibacteriaceae [1 novel species], Bogoriellaceae [1 novel species],
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and Micrococcineae [suborder] [1 novel species]. More than two-thirds of the
Earth’s surface is covered with marine ecosystems. Therefore, the marine habitats
are inexhaustible store for the under-used, uncommon, unique Actinomycetes
isolation.

7.3.3 Symbionts as the Source of Rare Actinomycetes

Symbiotic microorganisms, especially Actinomycetes (Schneemann et al. 2010;
Izumi et al. 2010) from aquatic invertebrates, animals, and plants, are progressively
rising for application in the process of drug development (Ganachari et al. 2018; Piel
2009). The symbiotic microbial population is vastly diverse and novel which shows
the sequential geographic variation in species composition (Webster and Hill 2001).
As a result, very less information is available about the taxonomic relationship of
marine symbiotic microorganisms (Friedrich et al. 1999). The widely occurred
symbionts are still unculturable, even with significant advancements in cultivation-
independent techniques used for studying these bacteria. These methods will have a
huge impact on the upcoming chemical analysis of symbionts because many sym-
bionts are still unidentified (Piel 2009). Interestingly, from the sea cucumber,
Holothuria edulis, two novel families such as Euzebyaceae (Kurahashi et al. 2010)
and Iamiaceae (Kurahashi et al. 2009) in actinobacteria were reported. Between
2007 and 2013, in plants and animals, 17 novel and rarely occurring Actinomycete
species associated with 11 different families of Actinomycete have been reported,
respectively. Of these, five new genera belonging to Phycicola, Labedella, Iamia,
Koreibacter, and Euzebya have been reported in marine animals and alga. From
2007 to mid-2013, the families described in marine animals and plants are
Nocardioidaceae [2 novel species], Pseudonocardiaceae [1 novel species],
Microbacteriaceae [3 novel species], Tsukamurellaceae [1 novel species],
Euzebyaceae [1 novel species], Micrococcineae [suborder] [3 novel species],
Micrococcaceae [1 novel species], Nocardiopsaceae [2 novel species],
Alteromonadaceae [1 novel species], Micromonosporaceae [1 novel species], and
Iamiaceae [1 novel species].

Mangroves are woody plants that are a unique community in subtropical and
tropical zones, situated between the transition of the sea and land region (Holguin
et al. 2001; Kathiresan and Bingham 2001). The mangroves play a very vital role for
many organisms in providing shelter, nourishment, breeding areas, and support a
large food web, this is mainly based on the organic matter produced by the decom-
position of organisms. The ecosystem of mangrove varies from others because of
seasonal flooding and changes in environmental factors such as salinity and nutrient
availability that result in metabolic pathway adjustment that could produce very
uncommon biomolecules. This idea resulted in the increased exploitation of the
resources from microorganisms thriving in the mangrove ecosystem (Long et al.
2005). Fourteen new rare Actinomycete species belonging to seven diverse families
are reported in mangrove sediments during 2007 to mid-2013. From those families,
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Ilumatobacter and Lysinimicrobium, two novel genera, were reported from man-
grove sediments. The reported seven families are Micrococcineae [suborder]
[1 novel species],Micromonosporaceae [7 novel species], Promicromonosporaceae
[1 novel species], Streptosporangiaceae [2 novel species], Acidimicrobiaceae
[1 novel species], Demequinaceae [1 novel species], and Thermomonosporaceae
[1 novel species]. A new family of Actinomycetes was reported from sediments of
mangroves by Hamada et al. (2012). Therefore, sediments of mangrove are very rich
resource for the Actinomycetes to produce various antimicrobial molecules and
enzymes (Subramani and Narayanasamy 2009).

7.4 Rare Actinomycetes from Plants

Several rare Actinomycetes were isolated from various parts of the plant (Matsumoto
et al. 1998; Shellikeri et al. 2018; Janso and Carter 2010), for the purpose of finding
novel microbial resources for regular screening of novel bioactive molecules
(Inahashi et al. 2011). For example, spoxazomicin, a new antitrypanosomal com-
pound, was found in the culture broth of a novel endophytic actinomycete
Streptosporangium oxazolinicum sp. nov. strain K07-0460T (Inahashi et al. 2011).
This strain is phylogenetically related to the genus Streptosporangium which was
isolated from the variety of orchid roots. Actinophytocola oryzae GMKU 367T and
Phytohabitans suffuscus K07-0523T, two novel genera, were also discovered
(Inahashi et al. 2010; Indananda et al. 2010). Therefore, plant roots are confirmed
to be a potential source for the discovery of new Actinomycetes.

The inner tissues of higher plants are relatively an overlooked niche. Previous
studies have shown that some actinobacteria form a close association with plants and
inhabit their internal tissues. Streptomyces scabies and Frankia species can penetrate
their hosts and establish either endophytic or pathogenic associations (Benson and
Silvester 1993; Doumbou et al. 1998). The Actinomycetes that occur in the plant
tissues and do not damage the plants are called as endophytic actinobacteria
(Hallmann et al. 1997). These actinobacteria are comparatively least studied and
are likely sources of new natural products for utilization in industry, agriculture, and
medicine (Strobel et al. 2004). In recent years, endophytic actinobacteria have
gained attention, with increasing reports of isolates from a variety of plant types,
including crop plants (rice and wheat, as well as citrus, carrots, potatoes, and
tomatoes) (Araujo et al. 2002; Coombs and Franco 2003; Sessitsch et al. 2004;
Surette et al. 2003; Tian et al. 2007) and medicinal plants (Taechowisan et al. 2003;
Zin et al. 2007). The endophytic culturable actinobacteria from these plant types fell
within a narrow species distribution in that Streptomyces spp. were the major
species, and common genera were Micromonospora, Microbispora,
Streptosporangium, Nocardioides, and Nocardia.

Relatively, endophytic Actinomycetes are a new source for novel species and new
bioactive molecules. By using special selective media and techniques, endophytic
Actinomycetes were isolated and their diversity from medicinal plants in
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Xishuangbanna, China, of the tropical rain forests studied (Qin et al. 2009). Thirty-
two different genera have shown an unexpected level of diversity. It was the first
report of Saccharopolyspora, Dietzia, Blastococcus, Actinocorallia,
Promicromonospora, Oerskovia, Jiangella, and Dactylosporangium species isola-
tion from endophytes (Tiwari and Gupta 2012a).

7.5 Extreme Environments

Actinomycetes, like other microorganisms, adapt and grow in different ecological
niches such as deep sea, low temperatures in glaciers, alkaline pH, acidic in the
industrial and mine wastewater effluents, extreme desiccation in deserts, high levels
of radiation, the high salt concentration in lakes, thermal vents, and high tempera-
tures in hot springs (Mahajan and Balachandran 2017). The microorganisms present
in extreme environments have received tremendous interest because of their unique
adaptation mechanisms to their harsh environments and also due to the production of
unusual compounds (Meklat et al. 2011). Irrespective of the appeal, however, there
has been little research carried out on Actinomycetes present in extreme habitats: An
accidentally discovered pioneer was Actinopolyspora halophila (Gochnauer et al.
1975). In recent years, several new Actinomycetes were discovered from basic soils
and salt in Qinghai and Xinjiang, the People’s Republic of China, by research
scholars from the Yunnan Institute of Microbiology at Yunnan University (Jiang
and Xu 1996; Jiang et al. 2006). They reported a novel family Yaniaceae, many new
genera of Streptomonospora, Naxibacter, Jiangella, Myceligenerans, and a vast
number of novel species of the genera Halomonas, Amycolatopsis, Isoptericola,
Citricoccus, Massilia, Nocardia, Microbacterium, Prauserella, Jonesia, Kribbella,
Nocardiopsis, Kocuria, Rhodococcus, Marinococcus, Saccharopolyspora,
Virgibacillus, Liuella, Saccharomonospora, Nesterenkonia, Sphingomonas, and
Thermobifida. Recently, by use of a polyphasic approach, a wide range of halophilic
Actinomycetes were evaluated and reported by Meklat et al., which revealed the
occurrence of a new genus and many new species of the Nocardiopsis,
Actinopolyspora, Streptomonospora, Saccharopolyspora, and Saccharomonospora
genera. In addition, their discovery of Nocardiopsis strains which had a high number
of NRPS genes could be an indicator of great potential Actinomycetes of halophilic
nature for the production of enormous active biological molecules (Meklat et al.
2011). One new family, eight new genera, and more than 30 new species of
alkalophilic and halophilic actinomycetes from alkaline and saline habitats, respec-
tively, were isolated by Kavita Tiwari and Rajinder Gupta (2012a). Actinomadura,
Nocardiopsis, and Micromonospora were isolated from soda salty soils of transient
saline lakes in Buryatiya (Lubsanova et al. 2014).

Bacterial populations inhabiting Roopkund Glacier, Himalayan Mountain, were
studied, and actinobacteria are the primary class, followed by β-proteobacteria
(Rafiq et al. 2017). As these habitats being the rich diversity of culturable actino-
mycetes, the recent study revealed that the occurrence of novel Streptomyces spp.
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from the Antarctic regions (Sivalingam et al. 2019). Two novel selected strains
ZLN712T and ZLN81T belonging to actinomycetes were isolated from a frozen soil
sample collected from the Arctic region (Kamjam et al. 2019). Some actinomycetes
were isolated from rhizosphere soil from Lachung, Himalaya region, and exhibit
antimicrobial activity (Singh et al. 2019). Bacterial diversity was explored and
screened for several hydrolytic enzymes from soil samples of Dras, India, the coldest
place after Siberia. Phylogenetic analysis showed that 40 different bacteria were
grouped into three major phylum, Firmicutes, Actinobacteria, and Proteobacteria,
differentiated into 17 diverse genera (Rafiq et al. 2017).

Some microbiologically specialized and diverse habitats for the isolation of
thermophilic actinomycetes are hot springs, desert soil, thermal industrial wastes,
and volcanic eruptions (Agarwal and Mathur 2016). In recent years, due to the
economic potential of thermophilic actinomycetes, researchers have shown great
interest in them, either in useful biological processes such as biodegradation or in the
production of antibiotics and enzymes. Thermoactinomyces belong to the genus
Microbispora, Saccharopolyspora, Thermoactinomyces, Streptomyces, and
Thermomonospora. Among these, thermophilic actinomycetes of the genus
Thermoactinomyces have clinical and industrial value. Few Thermoactinomyces
strains are recognized as effective protease producers (Agarwal and Mathur 2016).
Thermotolerant actinobacteria produce various enzymes of hydrolytic action like
amylase, cellulase, and xylanase, which show their activity at elevated temperatures
of 50–65 �C (Mohammadipanah and Wink 2016).

For the discovery of new actinomycetes and the bioactive compounds, the hot
spring sediments are an excellent source (Thawai 2012). The strain YIM 78087T
was isolated from a sediment sample collected from Hehua hot spring in Yunnan
province, southwest China, during a study on thermophilic actinobacterial resources
from hot springs. The isolate YIM 78087T represents a novel species of the genus
Streptomyces named Streptomyces calidiresistens sp. nov. as indicated from the
experimental data obtained (Duan et al. 2014). Actinomycetes were collected from
the sediments of a hot spring pond located in Krabi and Trang province, Thailand.
By studying the morphological properties and 16S rRNA gene sequence analysis,
these actinomycetes strains were identified and classified. They belong to the
member of genera Planosporangium, Streptomyces, Micromonospora, and
Microbispora (Aly et al. 2019). Overall, 20 samples of hot spring sediment and
soil samples from West Anatolia in Turkey were examined for the existence of
thermophilic actinomycetes. Strains were grown at a temperature of 55 �C. Sixty-
seven thermophilic actinomycete isolates are classified under Thermoactinomyces
sacchari and T. thalpophilus species. The maximum isolates are found to be
extracellular protease producers, among them (Agarwal and Mathur 2016). From
hot water springs, actinomyces species that produce a remarkable amount of ther-
mostable amylase and cellulose are active at acidic and alkaline pH (Chaudhary and
Prabhu 2016).

In two actinomycetes strains, LC2T and LC11T, isolated from a filtration sub-
strate made from Japanese volcanic soil, their taxonomic position was determined
using a polyphasic approach (Agarwal and Mathur 2016). From a mud volcano in
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India, two thermophilic Streptosporangium and Rhodococcus were isolated
(Mohammadipanah and Wink 2016). It is apparent that volcanic spring is one of
the extreme habitats on earth and harbors novel microbes as a source of potential
drug leads. Although the knowledge of the Streptomyces population in volcanic
habitat is sparse, there have been few noteworthy studies on the isolation of natural
drugs from volcanic Streptomyces (Sivalingam et al. 2019).

7.5.1 Caves

Recently, numerous novel Actinomycetes species are isolated from caves, including
those inhabited by bats in Spain, Reed Flute Cave in China, the Grotta Dei Cervi
Cave in Italy, and a gold mine in Korea (Subramani and Aalbersberg 2013). From
cave and cave-related habitats, 47 species in 30 genera of actinobacteria were
reported (Rangseekaew and Athom-Aree 2019). From a soil sample collected from
a karst cave in China, a novel actinobacterium was isolated. It was a novel species of
the genus Nocardioides identified based on phenotypic, genotypic, and phylogenetic
data (Zhang et al. 2018). From small stones collected from caves and agricultural
fields, the novel rare actinomycete genera Beutenbergia and Terrabacter, respec-
tively, have been reported (Subramani and Aalbersberg 2013). The rock walls of
caves are often colonized by Actinobacteria. In a study on the biogeochemical role of
actinobacteria, actinobacteria-coated spots on the cave walls in Altamira Cave
[Spain] were found to uptake carbon dioxide gas, which exists in abundance in the
cave. To dissolve rock and subsequently generate crystals of calcium carbonate, this
gas is used by the bacteria (Fang et al. 2017).

In general, caves have high humidity, but they are short of nutrients, luminous
intensity, and temperature (Schabereiter-Gurtner et al. 2002). The aforementioned
factors may promote antagonism, which augments hydrolytic enzymes and antibi-
otics production, leading to growth inhibition of other microorganisms (Nakaew
et al. 2009). Recently, numerous Actinomycetes species have been isolated from the
caves including the Grotta Dei Cervi Cave in Italy (Jurado et al. 2005a), a gold mine
in Korea (Lee et al. 2000; Lee 2006a, b), the Reed Flute Cave in China (Groth et al.
1999), and a bats-occupied cave in Spain (Jurado et al. 2005b). For the foremost
time, the Spirillospora and Nonomuraea isolation from the soil of a cave was
reported by Nakaew et al. (2009) and very rare genera such as Nonomuraea,
Catellatospora, Spirillospora, and Micromonospora. From the caves were isolated
members of genera Actinomadura and Saccharopolyspora, and other rare genera
Actinoplanes, Micromonospora, Microbispora, Nocardia, Gordonia, Nonomuraea,
along with principal genus Streptomyces by Niyomvong et al. (2012). Above studies
validate that the caves may act as a wide source of novel Actinomycetes yielding new
compounds.
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7.5.2 Actinomycetes from Insects

For discovering novel and new microorganisms, the insect world is another impor-
tant unexplored environment such as termites, ants, gall midges, and beetles
(Kaltenpoth 2009) for practicing fungi culture. Ant workers also protect their fungal
gardens through a combination of grooming and weeding (Little et al. 2006),
producing their antimicrobials through metapleural gland secretions (Bot et al.
2002), and the use of weed killers. These weed killers produced by symbiotic
Actinomycete bacteria (Haeder et al. 2009) are a natural producer of antimicrobials.
However, latest evidence suggests that bacteria from the Actinomycete genera are
also associated with attine ants; those genera are Amycolatopsis and Streptomyces
(Mueller et al. 2008). Whether the attine ant associated with Actinomycetes produces
antifungal compounds mainly remains unknown. Therefore, the world of insects is
rapidly flourishing as the source for discovering unusual and novel biologically
active molecules from Actinomycetes.

7.5.3 Other Habitats

From desert soil (Takahashi et al. 1996), Actinomycetes of rare genera such as
Nocardia, Saccharothrix, Microbispora, Microtetraspora, Amycolatopsis, and
Actinomadura have been isolated successfully. The novel rare Actinomycetes genera
Beutenbergia (Groth et al. 1999) and Terrabacter (Lee et al. 2008) have been
reported from small stones collected from caves and agriculture fields respectively.
Recently, soils from the nests of solitary wasps and swallow birds (Kumar et al.
2012) and the rare Actinomycetes genera such as Actinomadura, Nocardia,
Saccharopolyspora, Thermoactinomyces, and Streptosporangium were isolated.

7.6 Classification of Rare Actinomycetes

Among the 18 significant lineages presently documented in the domain Bacteria,
Actinobacteria is one of the largest units of taxonomy, including five subclasses, six
orders, and 14 suborders (Ludwig et al. 2012). The genera of this phylum show a
wide diversity in their morphology, physiology, and metabolic capabilities. With the
accumulation of knowledge over time, the taxonomy of Actinobacteria has evolved
significantly. Buchanan (1917) established the order Actinomycetales, which
belongs to this prokaryotic organisms group.

Based on its position of branching in gene trees of 16S rRNA, the phylum
Actinobacteria was delineated. However, ambiguity occurs because sequences of
rRNA cannot be well differentiated between closely related genera or species. For
example, within the family Streptomycetaceae the status of taxonomy of
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Kitasatospora genus (Omura et al. 1982) has been disputed for many years (Ludwig
et al. 2012; Wellington et al. 1992; Zhang et al. 1997), while current details of
genetic analysis provided strong confirmation that it should be considered as a
separate genus (Girard et al. 2014). A similar type of close relationship does exist
between Salinispora, Micromonospora, and Verrucosispora. For discrimination of
closely related genera, rpoB and in recent times ssgB have been used as additional
genetic markers (Girard et al. 2013).

In addition, detailed insights into genome evolution and identification of genes
specific to organisms at the family and genera level have been provided by the recent
massive increase in the availability of information of genome sequence (Kirby
2011). Based on 16S rRNA trees, for the phylum Actinobacteria, an updated status
of taxonomy was recently reported (Ludwig et al. 2012). The ranks of the taxonomy
of suborders and subclasses were eliminated, and former suborders and subclasses
were elevated to levels of orders and classes, respectively, by that update (Gao and
Gupta 2012). Actinomycetes are Gram-positive bacteria and have filamentous
growth like fungi. They are aerobic and ubiquitous. The DNA of Actinomycetes is
rich in G + C content with GC% of 57–75% (Lo et al. 2002). These Gram-positive
bacteria have been placed within the phylum Actinobacteria, Class Actinobacteria,
subclass Actinobacteridae, and order Actinomycetales, which at present consist of
10 suborders, more than 30 families, and over 160 genera (Chavan et al. 2013). They
resemble morphologically with fungi and physiologically with bacteria (Sultan et al.
2002).

According to Bergey’s Manual of Systematic Bacteriology, first edition,
Actinobacteria belonged to the order Actinomycetales and was divided into four
families Actinoplanaceae, Mycobacteriacea, Streptomycetaceae, and
Actinomycetaceae. With the buildup of information over time, the taxonomy of
Actinobacteria has considerably evolved. Actinobacteria were included separately
in the fifth volume in the second edition of Bergey’s Manual. The phylum
Actinobacteria separated into six classes: Rubrobacteria, Actinobacteria,
Thermoleophilia, Nitriliruptoria, Acidimicrobiia, and Coriobacteriia. The class
Actinobacteria subdivided into 16 orders: Frankiales, Actinopolysporales,
Glycomycetales, Micromonosporales, Catenulisporales, Actinomycetales,
Kineosporiales, Jiangellales, Bifidobacteriales, Streptosporangiales,
Pseudonocardiales, Micrococcales, Corynebacteriales, Streptomycetales,
Propionibacteriales, and Incertaesedis (Zhi et al. 2009). The Actinomycetales
order is currently limited to the family members of Actinomycetaceae (Gao and
Gupta 2012).

According to Bergey’s Manual, Archaea and Bacteria, the phylum
Actinobacteria includes five classes, 19 orders, 50 families, and 221 genera. How-
ever, as many novel taxa are continuously discovered, this listing is certainly
unfinished. Based on the 16S rRNA gene, sequence-based groups, and taxon-
specific 16S rRNA gene sequences, the class Actinobacteria and fundamental
taxonomic ranks above the genus level were proposed. This classification showed
an apparent change in the classification of Actinobacteria above the genus level as it
represented that former classifications based on the form and function did not reflect
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natural relationships. The rank of a phylum has been assigned to Actinobacteria
because the phylogenetic depth signified by the lineage resembles that of existing
species based on its branching position in 16S rRNA gene trees (Barka et al. 2016).
Among the 30 significant species currently recognized within the domain Bacteria,
the phylum Actinobacteria represents one of the largest phyla. Until October 2016,
6 classes, 18 orders, 14 suborders, 63 families, and 374 genera have been recorded in
this phylum.

7.7 Morphological Classification

The morphology and chemotaxonomy are the two main characteristic features
considered to define the Actinobacteria taxonomy at the species and genus levels.
The latter of the above characteristic features principally relates to whole-cell sugar
distribution and composition of the cell wall. However, the composition of phos-
pholipid and type of menaquinone might also be considered for enhancement
purpose (Labeda 1987). In a special vegetative form of reproduction, mycelial
fragmentation can be considered. However, reproduction by forming asexual spores
is primarily the lifestyles of mycelial Actinobacteria. Actinobacteria show a broad
diversity of morphology, differing mainly concerning the structure and appearance
of their spores, the absence or presence of a substrate or aerial mycelium, the
mycelium’s color, and the ability to produce a diffusible form of pigments of
melanoid.

7.7.1 Mycelial Morphology

Actinobacteria from a substrate mycelium in both solid-grown and submerged
cultures, except for Sporichthya sp., produce an aerial form of hyphae that are
uprightly initiated on the medium’s surface by using holdfasts. However, many
differences form aerial hyphae on solid surfaces, primarily for reproductive spores
production (Flardh and Buttner 2009; van Dissel et al. 2014). From a germinating
spores outgrowth, the substrate mycelium develops that usually is monopodial,
which in few exceptional cases of Actinobacteria like Thermoactinomyce show
branching of dichotomous nature (Kalakoutskii and Agre 1976). Alternatively, a
large substrate mycelium with rudimentary or no aerial type mycelium is produced
by members of the Micromonosporaceae family. Actinobacteria display various
morphologies, including coccus [Micrococcus], coccobacillus [Arthrobacter],
fragmenting hyphae [Nocardia spp.], and the ones with highly differentiated and
permanent branching mycelia [e.g., Streptomyces spp., Frankia] (Atlas 1997). On
the substrate, Corynebacteria do not produce mycelia at all, while Rhodococci
produces filaments of elongated form but not a true mycelium (Locci and Schaal
1980). However, filaments develop at the apex rather than through the extension of
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the lateral wall in the case of other Actinobacteria (Flardh 2003; Letek et al. 2008).
The development of branched hyphae on substrate breaks to form motile elements
with flagella, which is the characteristic of Actinobacteria belonging to the genus
Oerskovia (Prauser et al. 1970). Rhodococcus and Mycobacteria do not frequently
form the hyphae of aerial type (Ochi 1995).

7.7.2 Spore Chain Morphology

In the taxonomy of Actinobacteria, spores are extremely important (Locci and
Sharples 1984). The preliminary sporulation steps in many oligosporic
Actinobacteria could be considered as a process of budding because they show
property that satisfies the definition of budding in the other bacteria. The substrate
and aerial mycelium form spores of single cells or chains of diverse lengths. Spores
may occur in special flagellated vesicles [sporangia], in other cases. Therefore, the
formation of spores occurs directly on substrate mycelium in genera
Micropolyspora, Micromonospora, and Thermoactinomycetes (Cross and
Goodfellow 1973), whereas spores develop out of the aerial mycelium in Strepto-
myces. Motile spores are the characteristic feature of Actinoplanes and
Actinosynnema groups, while unique heat-resistant endospores occur in
Thermoactinomyces (Cross and Goodfellow 1973). Some other genera of
Actinobacteria have sclerotia [Chainia], synnemas [Actinosynnema], vesicles that
contain spores [Frankia], or vesicles that are devoid of spores
[Intrasporangium]. Based on their sporangial morphology, other genera are classi-
fied as Actinoplanes, Ampulariella, Planomonospora, Planobispora,
Dactylosporangium, and Streptosporangium. The spores of diverse types are
found in the Actinomycetes genera. Thus, to characterize the species, the morphol-
ogy of spores can also be used: they might have spiny, smooth, hairy, rugose, or
warty surfaces (Dietz and Mathews 1971).

7.7.3 Spore Chain Length

There exists wide variation from genus to genus in the spores number of every spore
chain. The isolated spores are produced by genera Salinispora, Micromonospora,
Saccharomonospora, Thermomonospora, and Promicromonospora, while spores of
longitudinal pairs occur in Microbispora. Organisms of genera Sporicthya,
Saccharopolyspora, Actinomadura, and some Nocardia spp. possess short length
chain of spores, while the genera Streptoverticillium, Nocardioides, Kitasatospora,
Nocardia spp., and Streptomyces produce a long length of chains up to 100 spores.
Conversely, sporangia are spore-containing bags produced by Frankia species. The
spore chains of Streptomycetes are classified as straight to flexuous [Rectus-
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Flexibilis], open loops [Retinaculum-Apertum], open or closed spirals [spira], or
verticillate (Pridham et al. 1958).

7.7.4 Based on Melanoid Pigment

Melanins are polymeric with varied molecular structures that are brown or black.
They are formed by the oxidative polymerization reaction of phenolic and indolic
compounds. Melanins are synthesized by a range of organisms, from humans to
bacteria. For a long time, Actinobacteria are known for pigments production,
depending on the strain, used medium, and culture age, which may be yellow,
red-orange, brownish, pink, greenish-brown, distinct brown, black or blue
(Lechevalier and Lechevalier 1965). These metabolic polymers are useful in taxo-
nomic studies and are similar to humic substances in soil (Dastager et al. 2006;
Manivasagan et al. 2013). In spite of melanins having a role in improving the
survival and competitiveness of Actinobacteria, they are not indispensable for the
growth and development of an organism.

7.8 Chemotaxonomic Classification

Chemotaxonomy is the grouping of organisms according to the similarity in their
cellular chemistry based on the distribution of chemical components (Goodfellow
and Minnikin 1985; O’Donnell 1988). In this chemotaxonomy, the constituents of
cell wall lipids, amino acids, vitamin K2, muramate types, carbohydrates, proteins,
and DNAs base composition are considered for grouping the organisms (Goodfellow
and O’Donnell 1989; Williams et al. 1989) for gouping the organisms. Chemotax-
onomic identification and classification are performed based on information
resulting from techniques of chemical fingerprinting of whole organism. The valu-
able markers of chemotaxonomy that have been reported for the purpose of identi-
fication and classification of the Actinomycetes are discussed further (Ludwig et al.
2012). As the composition of cell walls differs between the suborders, this charac-
teristic is valuable taxonomically for Actinobacteria analysis (Berd 1973).

Particularly, the information about the chemical structure of cell walls peptido-
glycan is useful to classify actinomycetes because it promotes discrimination
between Actinobacteria groups above the genus level. Several differentiating char-
acteristics in relation to their composition and structure of peptidoglycans are
identified (Willey et al. 2010). Non-proteinogenic amino acid 2,6-diaminopimelic
acid [DAP] present in the cell wall of bacteria of Gram-positive nature is an
important chemotaxonomical characteristic. Depending on the genus, the peptido-
glycan may be DL or LL [meso]-DAP in Actinobacteria. By considering DAP
isomerism, Lechevalier and Lechevalier had identified nine different chemotypes
of the cell wall in Actinobacteria (Lechevalier and Lechevalier 1980). On the other
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hand, diverse Actinobacteria groups share the same profile of DAP. For instance, in
spite of differences in families and morphologies of Streptomyces, Arachnia,
Streptoverticillium, and Nocardioides genera, they all share identical chemotype,
i.e., chemotype I. Therefore, for assessing diversity in the phenotype of
Actinobacteria, profiling of DAP and other genotypic or phenotypic criteria should
be used (Bouizgarne and Ait Ben Aoumar 2014). Thus, a system was proposed to
classify Actinobacteria on the basis of both their chemical and morphological
characteristics (Lechevalier and Lechevalier 1965).

For the identification of specific Actinobacteria genera, patterns of fatty acid in
cell are useful indicators of chemotaxonomy (Kroppenstedt 1985). Generally, fatty
acids in bacteria have carbon chain length of C2 to over C90, but only C10 to C24
have taxonomic value (Suzuki et al. 1993). In Actinobacteria, majorly 3 types of
fatty acid profiles have been reported (Kroppenstedt 1985). In bacteria, various
isoprenoid quinone types are characterized (Collins et al. 1985), of which
menaquinones are found in cell envelopes of actinomycetes (Kroppenstedt 1985;
Suzuki et al. 1993; Collins et al. 1985; Collins 1994). Menaquinone analysis has
provided valuable information for taxonomical classification of Streptomyces,
Actinomadura and Microtetraspora strains (Kroppenstedt 1985; Collins et al.
1988; Kroppenstedt et al. 1990; Yamada et al. 1982). Additionally, menaquinones
of cyclic form occur in Nocardia genus members (Goodfellow 1992; Tindall et al.
2006), while cyclic menaquinones with full saturation occur in Pyrobaculum
organotrophum (Tindall et al. 2006). In the Actinomycetes’ cytoplasmic membranes,
different types of phospholipids are unevenly distributed, which provide information
for the identification and classification of genera of Actinomycete (Williams et al.
1989; Goodfellow 1989). On the basis of semi-quantitative analysis of important
phospholipid markers present in extracts of whole organism, Actinobacteria are
classified into five phospholipid groups (Lechevalier 1977; Lechevalier et al.
1977, 1981).

In the identification of Aeromicrobium (Yokota and Tamura 1994) and Dietzia
(Rainey et al. 1995), this classification system was used. It has been reported that the
same type of phospholipid occurs in a population of the same genus of
Actinobacteria. For chemotaxonomy, analysis of the composition of sugar is vital.
One of the major constituents of cell envelope of actinomycete is neutral sugars,
which is a useful marker of taxonomy at the suprageneric level. Actinomycetes can
be divided into five groups based on the discontinuous distribution of major diag-
nostic sugars. The group A species contain galactose and arabinose in the cell wall;
group B cell wall has madurose [3-O-methyl-D-galactose]; species with no diagnos-
tic sugars are clustered in group C; cell wall of group D species contains xylose and
arabinose; rhamnose and galactose are present in the cell wall of group E species
(Labeda 1987; Lechevalier and Lechevalier 1970). Additionally, for the classifica-
tion of some actinomycete taxa, the occurrence of 3-O-methyl-rhamnose in
Catellatospora (Asano et al. 1989) and tyvelose in Agromyces (Maltsev et al.
1992) has been reported.
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7.9 Molecular Classification

More recently, by the rapid advancement of genome sequencing, the classification of
actinomycetes becomes easy by molecular taxonomic data. Notably, based on
molecular analysis, recently, some organisms have been reclassified as they were
previously placed in inappropriate taxonomic groups (Zhi et al. 2009). Recently,
genome sequencing gave the final classification of Kitasatospora as a distinct genus
within Streptomycetaceae (Girard et al. 2013) which provided a solution to a debate
of a long time about the relationship of this group with genus Streptomyces (Zhang
et al. 1997; Girard et al. 2014; Ichikawa et al. 2010; Kim et al. 2004). At present,
without genetic analysis based on sequencing the 16S rRNA gene and DNA-DNA
hybridization, even genome sequencing a new species cannot be claimed. The
criteria of chemical and molecular composition have been used to group the order
Actinomycetales into 14 suborders: Actinomycineae, Pseudonocardineae,
Corynebacterineae, Propionibacterineae, Jiangellineae, Actinopolysporineae,
Kineosporineae, Streptomycineae, Micromonosporineae, Frankineae,
Glycomycineae, Catenulisporineae, Micrococcineae, and Streptosporangineae
(Euzeby 1997). Moreover, 16S rRNA gene sequencing led to the identification of
130 genera and 39 families. Based on these molecular and chemical criteria, all the
groups that were previously assigned to the taxonomic rank of “order” have been
recovered as strictly being monophyletic. Still, some paraphyletic groups are found
within the rank “suborder.”

Berdy (2005) reported that rare actinomycetes produce highly unique, diverse,
and rarely complicated compounds with tremendous antibacterial activity and low
toxicity. Currently, more than 50 rare actinomycete taxa are reported to produce
2500 bioactive compounds (Fig. 7.1). These bioactive compounds can be used for
pharmaceutical and biotechnological applications (Kurtboke 2010). The investiga-
tion of secondary metabolites from rare actinomycetes has been less frequent than

Fig. 7.1 Bioactive compounds of microbial origin
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Streptomyces. This has made rare actinomycetes a significant resource for finding
new secondary metabolites with biological activity. A number of secondary metab-
olites discovered from 2008 to 2018 in 21 genera of rare actinomycetes isolated
mainly from soil and insects were shown in Fig. 7.2 (Ding et al. 2019).
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Chapter 2
Actinobacteria in Marine Environments

Jayachandra S. Yaradoddi, Merja H. Kontro, Sharanabasava V. Ganachari,
Nagaraj R. Banapurmath, Ajaykumar Oli, Anilkumar S. Katti, and
M. B. Sulochana

Abstract Themarine environment is one of the significant habitats for exploring novel
compounds from diverse microorganisms; among these organisms, marine
actinobacteria are considered to be a leading contributor. Recently, imperative advance-
ments have beenmade in the field of marinemicrobial ecology with particular emphasis
on molecular studies, including 16S rRNA analysis and metagenomics libraries, which
have indicated the predominance of actinobacterial diversity in the soil sample. Both
culture-dependent and culture-independent approaches have revealed the importance of
marine actinobacterial diversity in biomedical science and bioengineering applications.
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The major habitats for marine actinobacteria are the seashore, sea snow, hydrocarbon
seeps, saturated brines, cold seeps, and hydrothermal vents. Many reports have shown
the presence of epibiont and symbiotic actinobacteria in the marine micro as well as
macrofauna. Actinobacteria are unevenly distributed in the marine environment in
small but substantial quantities along with the significant levels of biodiversity. The
presence of viruses within the marine actinobacteria forms the marine actinophages that
have been recognized for their ubiquitous nature. However, the extent of marine
actinobacterial biodiversity, distribution, and abundance is still undistinguishable due
to fewer reports, intermittent research work, and inappropriate identification methods.

Keywords Actinobacteria · Marine environment · Metagenomics · Biodiversity ·
Habitats · Epibiont · Symbiotic association

2.1 Introduction

Gram-positive, aerobic, and nonmotile Actinobacteria can have a high DNA
guanosine-cytosine (GC) base content of 70–80%. According to the 16S rRNA gene
phylogeny, they are evolutionarily much more bacterial-like than fungal; although
partly due to the filamentous morphology, they were originally considered to be
intermediates between bacteria and fungi. Accordingly, members of the phylum
Actinobacteria are classified as prokaryotes and belong to the order Actinomycetales,
which have substrate hyphae and form aerial spores and mycelium. The aerial hyphae
of actinomycetes tend to produce sporophores, and their structure varies widely. The
spore-forming hyphae with aerial mycelium possess enormous lengths compared to
substrate mycelium. An additional interesting characteristic feature of the spores is
their resistance toward desiccation, and the spores can be viable for long periods. The
life process gives resistance to harsh environmental circumstances, such as reduced
water availability and nutrient deficiency. Such microorganisms are phenotypically
and genetically unique and can be seen in most environments.

2.1.1 Basis and Distribution of Marine Actinomycetes

Actinobacteria or actinomycetes are typically discovered from oceanic sediments, and
they occur abundantly within the soils. Their diversity and distribution in the aquatic
system has mostly been unrevealed for several years. Many of the researchers have
questioned the nativity of the marine actinomycetes due to resistant spores that may
have migrated from the terrestrial environments to sea and other aquatic systems.

2.1.2 Actinobacteria in the Marine Environments

Marine microbiology is emerging globally with a discrete focus on secondary
metabolite production. Blunt et al. (2007) reported that between 1965 and 2014,
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more than 25,000 new compounds were discovered in distinct marine organisms in
22 oceanic regions worldwide, including the Indian Ocean and islands; Atlantic
Europe and Baltic Sea; South, North, and Central America; Australia; some African
countries; and Arctic and Antarctica. Inspired by this, marine actinomycetes have
also been explored for the possible ability to produce unique secondary metabolites,
and, as the previous reports have revealed, they are the abundant sources for
bioactive molecules. These microorganisms hold an exceptional position as signif-
icant targets for major screening processes, as their diversity provides support to
anticipate that they also have the capability to synthesize various pharmaceutically
important molecules and novel secondary metabolites (Ellaiah et al. 2004).

Following the discovery of actinomycin (Lechevalier 1982), bioactive molecules
were screened from actinomycetes to produce antitumor agents, commercial bioac-
tive molecules, and desired industrial enzymes (Tanaka and Omura 1990). As much
as about two-thirds of the recovered natural metabolites have been derived from
these microbes (Takaizawa et al. 1993), among which most of the bioactive com-
pounds have been discovered from Streptomyces spp. (Goodfellow and O’Donnell
1993). The produced bioactive molecules have been found to be of major structural
interest and essential in promoting the development of novel antibiotic derivatives
from their molecular backbone (Sivakumar et al. 2007).

Although the microbial assortment in the terrestrial conditions is intrinsically
remarkable, utmost diversity can also be seen in the oceanic environments (Donia
and Hamann 2003). It is well-known that about 70% of the Earth exterior is the
ocean, from which life was originated. Several research investigations have revealed
that in the marine environments, like coral reefs and deep seafloor, the biological
diversity is quite high compared to, for example, tropical rainforests (Haefner 2003).
This is due to marine ecological circumstances, which are very unusual and different
from the terrestrial environment; it can be inferred that actinobacteria from the
oceans have possessed in evolution toward different characteristic features than the
terrestrial ones (Yaradoddi et al. 2020a; Yaradoddi and Sulochana 2020). Conse-
quently, they could have the potential to produce diverse classes of secondary
metabolites. The adaptability of marine actinobacteria toward the extreme and
harsh living conditions has resulted from the vast evolutionary range of extreme
environments, covering high seabed pressure (upper limit about 1100 atmosphere),
anaerobicity, sometimes extreme acidic conditions (pH low, about 2.8), and tem-
peratures close to 0 �C or in the other extreme about 100 �C near the hydrothermal
vents on ridges in the middle of the ocean.

The unique conditions are undoubtedly reflected in the metabolic and genetic
multiplicity of the marine actinobacteria, which continues immensely to be
unknown. Indeed, the marine conditions are almost untapped sources of novel
types of actinobacterial diversity and, consequently, the novel metabolites (Stach
et al. 2003a; Jensen et al. 2005a; Fiedler et al. 2005; Magarvey et al. 2004). The
diversity and distribution of actinomycetes inside the sea have been hugely ignored,
and many original marine actinobacteria remain uncharacterized. This gap is created
because of limited research work conducted toward exploring marine actinobacteria,
whereas the terrestrial actinobacteria are much more utilized for the investigation
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and production of novel bioactive molecules. Various computational approaches are
promoting in understanding the actinobacteria at the gene level to explore novel
natural products (Fig. 2.1).

2.2 Origin of Marine Actinobacteria

Marine actinobacteria have remained dormant for several years; actually, these
bacteria have been estimated to be migrated as leached dormant spores from soil
that are able to survive but not grow (Goodfellow and Williams 1983). Nowadays it
is unambiguous that the explicit communities of marine inhabited actinomycetes not
only occur in the marine environmental conditions but also contribute by adding
diversity within a wide array of actinobacterial taxa (Mincer et al. 2002; Stach et al.
2004). Reports have also indicated that actinomycetes can be recovered from the
coastal environments, deep-sea sediments, and mangrove swamps (Sivakumar 2001;
Tae et al. 2005), despite the selective techniques used in the cultivation of
actinobacteria aimed only at mycelium-producing strains, thus excluding the inter-
esting marine populations such as mycolate actinobacteria (Colquhoun et al. 1998).
It has been realized that the marine actinobacteria comprise of novel phenotypes and
are undoubtedly different from those recognized to occur in soil. While the biolog-
ical properties of marine and aquatic actinobacteria continue to be undefined, there is
a scope in understanding their ecological roles as terrestrial ones. The terrestrial
actinobacteria are involved in degradation of recalcitrant organic compounds,
mainly chitin, a biopolymeric material abundant in the ocean. As long as
actinobacteria are living inside the sea, which undergoes a significantly diverse
ecological circumstances when compared with terrestrial populations, the occur-
rence of speciation in marine actinobacteria with several exceptional taxa is not
surprising. Besides being a wide range of marine actinobacterial multiplicity, it has
yet to be described. Researchers must understand the mechanisms of adaptation of
the organisms in the ocean that lead to the production of bioactive molecules; there is
a need for these interactions to be established.

Marine ecosystems have a substantial actinobacterial diversity, allowing for the
extraction of new metabolites and their genes, thereby increasing global awareness
to microorganisms in the oceans and their bioactive molecule products. Based on the
potential associated with marine actinobacteria, several new molecules in previously
unknown configurations have been uncovered (Subramani and Aalbersberg 2012).
The intertidal or littoral zone regular changes between exposure to air during low
tide and high tide flooding are a unique part of the sea shores and estuary. The zone is
also a habitat for actinobacteria, though their communities, biological activity, and
genetic capacity have been infinitely little studied, and the niche most likely is
arousing curiosity for the discovery of novel genes of biological origin and potential
antimicrobial producing strains. However, the biodiversity and bioactive molecule
biosynthesis in intertidal sediments have been assessed using cultivation-based
methods. The results using genomic fingerprints demonstrated the occurrence of
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high diversity and potential for multiple biosynthetic pathways (Jose and Jha 2017).
Furthermore, the 39 km2 Diu Island (20.71�N 70.98�E) near Saurashtra Peninsula
(Gujrat, India) in the Arabian Sea is an area where unique, diverse microorganisms
grow, and the diversity and biological capacity of actinobacteria have not been
examined. These few examples reveal well that there are many areas in the marine
environment that are poorly studied in terms of actinobacteria.

2.2.1 Different Niches of Marine Bacteria

Actinobacteria can be discovered in several free-swimming marine invertebrates and
vertebrates, as well as in immobile organisms. These distinguished bacteria are
found in marine living beings that produce bioactive molecules. For instance, the
puffer fish was recognized as a producer for the potential neurotoxin, tetrodotoxin.
However, several current marine/aquatic organisms are also found to be important
producers of tetrodotoxin. The ability has often been associated with different
prokaryotic bacteria, such as actinomycetes. Puffer fish usually has high levels of
toxins in the liver and ovaries, where it also possesses tetrodotoxin-producing
actinobacteria. The identified bacteria have been strongly associated with
Nocardiopsis dassonvillei, which has also been recovered through puffer fish ovaries
(Wu et al. 2005).

2.2.2 Actinobacteria in Marine Snow

Marine snow is mostly organic detritus that falls into deeper layers of the water
column. Previous investigations (DeLong et al. 1993; Simon et al. 2002) revealed
that actinomycetes have not been successfully detected in marine snow through
molecular techniques, although cultivation-based methods have been flourishing
(Grossart et al. 2004). A total of 10% fraction of actinobacteria was recovered
from marine macroaggregates called marine snow. The actinobacteria in the aggre-
gates were connected with competitive interactions, as 80% of the actinobacterial
cultures indicated antagonistic effects on the growth of other bacterial cultures
utilizing aggregates. The contradictory results of these investigations regarding the
existence or lack of actinobacteria in the marine snow were emphasized to be based
on the geographical conditions and environmental heterogeneity of marine snow.

2.2.3 Actinobacteria in Sediments

Since, as per the literature, actinomycetes are among the key phyla in marine
sediments; several research advancements have been developed in isolation,
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identification, and classification of actinobacteria as part of the indigenous microbial
flora. During the latest decades, various strategies have been successfully developed
for isolation and screening for secondary metabolite production, with particular
focus on marine actinomycetes (Ma et al. 2009). As a result, novel and unambigu-
ously marine actinomycete genera, Salinispora andMarinophilus, were successfully
defined, which later on led to a significant improvement in culture-dependent
discovery of drugs (Jensen et al. 2005b; Newman 2016). The isolation of
actinobacteria from samples collected from different sea areas, covering mud,
(subtidal) sediments, sponge, ascidian, and different depth series has expanded the
identified diversity. Detailed information is available on actinobacterial quantifica-
tion and classification in different geographical locations and on their biological
activity. This process has led to an increase in the number of isolated and classified
actinobacteria and discovery of their new bioactive products (Blunt et al. 2011,
2016; Newman and Cragg 2012; Claverías et al. 2015; Stach et al. 2003b; Magarvey
et al. 2004). As an example, hypersaline Hamelin Pool stromatolites in Shark Bay
(Western Australia) are a structure of organo sedimentary material composed due to
microbial metabolic activity. The morphology of living stromatolites is analogous to
that of the fossil ones, which can be as old as 3.5 billion years. Examination of
microorganisms in these exceptional mat communities showed significant differ-
ences between stromatolite structural types, with a cyanobacterial portion of about
5% being lower than expected, while an actinobacterial abundance was approxi-
mately 14% with the average sequence identity of 95.5% to the closest relatives in
databases. Actinomycetes appeared to be ubiquitous in stromatolites under marine
environmental conditions (Papineau et al. 2005).

2.2.4 Association with Fauna

Bioactive molecules from the sea can also be derived from fauna, sponges, and
marine invertebrates, that is, from sessile organisms. Site-bound organisms require
an effective mixture of chemical defense molecules. In particular, the sponges are
considered to be abundant sources of new metabolites (Hill 2004). They are asso-
ciated with sophisticated bacterial communities within tissues. Bioactive secondary
metabolite-producing actinobacteria are widespread among these microbial commu-
nities, which comprise a wide variety of sponge-specific lineages that include
actinobacteria from the genera Theonella, Rhopaloeides, Aplysina, Xestospongia,
Gordonia, Micrococcus, Brachybacterium, Salinospora, Micromonospora,
Actinoplanes, Streptomyces, and many inadequately characterized and uncultured
bacterial clones (Hentschel et al. 2002; Montalvo et al. 2005; Kim et al. 2005).
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2.2.5 Deep Subfloor Biosphere

The fascinating ecology of the seafloor and its sediments and the evolution of
microbial communities reveal the abundance of bacteria, archaea, fungi, and viruses
in extreme environments at sea depths down to 5500 m and even below (Orsi 2018;
Walsh et al. 2016). The compiled data from 65 studies showed that bacteria and
archaea in the subseafloor have almost the same abundances. Both microbial groups
decreased with increasing depth, bacteria more than archaea (Lloyd et al. 2013). The
species richness and genetic diversity of actinobacteria also varied, as sediment
depth increased below the seafloor at 3814 m so that diversity shifted toward
dominance, while each sediment section had distinct characteristic phylogeny, that
is, the actinobacterial genetic relatedness in sediment sections collected 5–46 cm
below the seafloor was different. Actinobacteria were most closely related to
Corynebacterineae, Frankineae, and Streptomycineae, though only 9% of the oper-
ational taxonomic unit groups (OTUs) showed 99–100% homology to cultivated
actinobacteria; the rest had 94–98% homology (Stach et al. 2003b). In the vertical
microbial diversity profile from sea surface down to subseafloor sediments, the
quantities of Actinobacteria, Planctomycetes, and Firmicutes OTUs were among
the most abundant in water columns. OTUs, which were abundant in deep
subseafloor sediments, were often common in shallow sediments and were also
observed at low concentrations in the water column, suggesting that they are
ultimately seeded from the water column (Walsh et al. 2016). Since only
7 actinobacterial strains could be isolated from subseafloor sediments out of 194 cul-
tivated (southwestern Sea of Okhotsk) (Inagaki et al. 2003), while 16S rDNA
sequencing has revealed a much higher diversity and abundance (Stach et al.
2003b), it can be concluded that the greatest part of the metabolic divergence and
bioactivity of subfloor biosphere actinobacteria is yet to be discovered.

2.2.6 Methane-Hydrate-Associated Sediments

Actinomycetes contributed as much as 40% of all sequences present in methane-
hydrate-associated sediment clones in Nankai Trough, indicating that actinobacteria
may cover a remarkable portion of biodiversity in particular geographical extreme
sites (Reed et al. 2002). Actinomycetes have spread widely to the marine ecosystem
in a little but important portions of genetic multiplicity. Apart from actinomycetes,
the oceans are also occupied by different groups of viruses (Suttle 2005), and the
ubiquitous occurrence of the actinomycetes has also appeared in the existence of
actinophages in the marine environment (Kurtböke 2005). The profusion and degree
of actinomycete diversity in various biogeographical locations remains unclear; this
is due to lower sampling rates. Further, the identification of actinomycetes by
fragmented biased methods has not been clearly described (Suttle 2005; Kurtböke
2005).
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2.3 Marine Actinobacteria in Phytopathogen Control

In recent decades, the major focus in the agricultural sector has been on pollution,
which is usually released through widespread use of highly hazardous agrochemi-
cals, mainly pesticides (Rai et al. 2011; Prévost et al. 2006). Meanwhile, in the
1970s, in addition to the hazardous effects on the public health conditions, over a
period of time-continuous exposure toward the pesticides has led to progress in
phytopathogen tolerance (Aktar et al. 2009). The occurrence of pathogenic infec-
tions in agricultural crops in the global economy position is relentless; both acade-
mies and industry have improved their studies in search of solutions to the present
issue.

Bacterial cells of both beneficial and also pathogenic strains were identified as
social populations, which are capable to control their gene expression in the density-
based pathway, the mechanism called as quorum sensing (QS) (Helman and Chernin
2015). Quorum sensing controls the biological mechanisms associated with metab-
olism, growth, and virulence among bacterial cells by synthesizing signaling mole-
cules, which intensify the concentration with respect to an increase in cell numbers
(Grandclément et al. 2016). When the amount of the molecules attains a particular
threshold, unlikely signal transduction cascades are stimulated as a result of changes
in gene expression, which includes a pathogenic effect. The QS dictates the expres-
sion of various virulence characters, and several plant pathogens are dependent on
this type of system to induce disease in its host plant (Andersen et al. 2010; Barnard
et al. 2007). For instance, it is a well-known fact that quorum sensing system
regulates toxoflavin biosynthesis in several members of Burkholderia species (spe-
cifically among the Burkholderia glumae) and, thus, phytotoxin can be recognized as
a critical pathogenic factor in wilt disease affecting the plant vascular system and in
rice rot disease causing black lesions (Kim et al. 2004). To control this problem,
there are several antagonistic compounds, mainly antibiotics, which can be obtained
from microorganisms. Thus, microbes are mainly recognized as a chief source of
antimicrobial compounds that can be used against phytopathogens of agricultural
crops.

To date, the most powerful source of such antibiotic-producing microorganisms
has been the terrestrial environment (Sulochana et al. 2014a, b). However, microor-
ganisms from seas have also been documented to be a vital basis for bioactive
compounds in the future due to their ability to control these phytopathogens
(Ma et al. 2009; Blunt et al. 2016). Furthermore, marine bacteria belonging to
phylum Actinobacteria have been identified as one of the most imperative species
cluster with immense biotechnological applications (Blunt et al. 2016; Shellikeri
et al. 2018; Yaradoddi et al. 2020b), accordingly contributing by increasing the
supply of novel bioactive compounds (Newman 2016). The metabolites from the
marine origin have become a model for the advancements in putative antimicrobial
and insecticidal compounds and, thus, they have turned to be an excellent candidate
in agrochemical production (Blunt et al. 2011; Newman and Cragg 2012). For
example, concerning to kasugamycin hydrochloride, it is a general antifungal
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agent used against theMagnaporthe grisea and a potential antibacterial agent against
Burkholderia glumae (Yoshii et al. 2012). These secondary metabolites were ini-
tially recovered from the terrestrial actinobacterium Streptomyces kasugaensis, and
afterward it was also extracted from the marine strain Streptomyces rutgersensis
subsp. gulangyunensis (Betancur et al. 2017).

An approach of the therapeutic value of antibiotics can be ascribed toward in vivo
bacterial growth inhibition once antibiotic concentrations surpass the minimum
inhibitory concentration (MIC). Besides, although the concentration is lower than
the MIC, it can still be able to reduce the growth activity and also the expression of
different bacterial virulence factors, diminishing possible effects of the pathogenic
organisms on causing the disease. The specific action of antibiotics known as
sub-MIC effects, further compounds that are used in quorum quenching activities
are called as quorum quenching compounds (QQC) (Helman and Chernin 2015).

The QQC have been applied for the inhibition of the expression of virulence
factors of the phytopathogens. There are different mechanisms directed to the
biosynthesis of enzymes, which lead to the interference with virulence factor
signaling. Inhibiting enzymes can interfere with the signaling molecule biosynthesis
at the transcriptional level, or the enzymes may inhibit receptor activation by
producing quenching compounds (Helman and Chernin 2015). Numerous existing
research outcomes demonstrate the ability of bacterial strains to inhibit QS systems
of phytopathogenic strains. For example, several species from the genus Streptomy-
ces encompass potential of inhibition against the various QS-controlled virulence
factor expression in Pectobacterium carotovorum. The inhibition occurs by synthe-
sizing several bioactive compounds that have been recognized as containing
piericidin A and glucopiericidin A, indicating that the compounds have potential
for biocontrol of plant pathogens (Kang et al. 2016). The molecules extracted from
marine territory microorganisms could be valuable, when appropriately used as
bioactive agents in quorum quenching to prevent pathogenic bacterial communica-
tion and to lower the injury to the host (Kalia 2013). Furthermore, N-amido–αproline
and the linear dipeptide (proline, glycine) produced by actinobacterium in aquatic
sponge presented preventing actions upon quorum sensing and facilitated the
adverse influences of Pseudomonas aeruginosa (Naik et al. 2013).

2.4 Marine Bacterial Cultures

Several conventionally used cultivation media and their derivatives are available for
cultivating actinobacteria from terrestrial environments, such as starch-casein-KNO3

agar, actinomycete-isolation agar, glycerol-arginine agar, tryptone-yeast extract-
glucose agar, tryptone-soy agar, glucose-yeast extract agar, and humic acid-vitamins
agar (Suutari et al. 2002; Maldonado et al. 2005). Marine bacteria have typically
been cultivated on marine agar (ZoBell 1946). As these media contain quite high
concentrations of organic substrates and select microorganisms that grow rapidly to
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high densities under rich nutritional conditions, later especially in marine environ-
ments, the growth media development has focused more on low-nutrient substrates.

Media with low nutrient concentrations represent the composition of the marine
environment. Among the first cultivation techniques developed were dilution cul-
tures combined with flow cytometry, in which marine bacteria were diluted and then
cultivated in seawater based-media (Button et al. 1993). The most probable number
(MPN) cultivation on mineral media with different compositions was used to
quantify Mediterranean sapropel bacteria (Süẞ et al. 2004). Further, high-
throughput cultivation in small quantities (extinction culturing) under low substrate
conditions on microtiter plates was developed to improve screening efficiency by
mimicking nutrient concentrations in situ (Connon and Giovannoni 2002). End point
dilution using microtiter plates and dilute growth medium, such as diluted nutrient
broth, combined with automated cell array and imaging were used successfully to
isolate novel marine bacteria (Janssen et al. 2002; Keller and Zengler 2004; Mincer
et al. 2002; Rappe et al. 2002). Gel microcapsules were developed to encapsulate and
cultivate individual cells under low nutrient conditions, and growth was monitored
by flow cytometry until the microcolonies could be sorted individually into dishes
with selective growth medium (Zengler et al. 2002, 2005; Toledo et al. 2006).
Moreover, diffusion chambers were designed to simulate marine environmental
conditions for bacterial cultivation (Kaeberlein et al. 2002). Incubation times were
extended up to 6 weeks and even longer to allow growth of slow-growing microor-
ganisms (Keller and Zengler 2004; Mincer et al. 2002; Toledo et al. 2006; Gontang
et al. 2007).

Alongside media development, selective microbial isolation methods were
improved. The practices include, for example, use of antibiotics with various carbon
sources; K2Cr2O7 to inhibit fungal growth; nalidixic acid to prevent the growth of
fast-growing Gram-negative bacteria; and cAMP and acyl homoserine lactone
supplements. Sample pretreatment was also developed, such as heat shock enrich-
ment for spore-forming bacteria (Maldonado et al. 2005; Mincer et al. 2002;
Gontang et al. 2007; Zhang et al. 2006; Bruns et al. 2002). Finally, the drying wet
intertidal sediment overnight, followed by stamping onto various agar media,
resulted in the isolation of 65.6% of actinobacterial strains, with the remainder of
the isolates belonging to the class Bacilli (Gontang et al. 2007). The various
approaches outlined above have significantly improved the cultivability of previ-
ously uncultivated marine bacteria.

2.4.1 Antimicrobial Actions of the Extracts

Various in vitro screening methods are available to examine antimicrobial suscep-
tibility. Among the most commonly used bioassays are diffusion methods, including
agar disk diffusion, agar well diffusion, and agar plug diffusion methods, as well as
antimicrobial gradient, cross streak, and poisoned food methods. The agar disk
diffusion method is simple to perform and allows large series of antimicrobials
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and microorganisms to be examined, and the results are easily interpreted. Thus by
testing the antibiogram one can measure the susceptibility results to classify micro-
organisms to resitant, intermediate, and susceptible. However, the method does not
distinguish microbicidal or microbiostatic effects and cannot really be used to
evaluate the minimum inhibitory concentration (MIC). An antimicrobial gradient
method is required for MIC determination (Balouiri et al. 2016). A modification of
these methods, the direct confrontation assay, has been successfully used to evaluate
the antibacterial activity of marine actinobacteria strains against Burkholderia spe-
cies. The in vitro antagonism assay originally developed to test for fungal growth
inhibition by soil actinomycetes has also been used successfully to measure the
antifungal activity of marine bacteria (Betancur et al. 2017; Crawford et al. 1993).

Organic extracts of marine bacterial strains were used to survey their antibacterial
activity against Burkholderia pathogens by the diffusion method. After cultivating
the marine bacteria in 100 mL of tryptone-soy broth, the liquid phase was separated
by centrifugation and sterile filtration (0.22μm), followed by liquid extraction with
ethyl acetate. The antibacterial activity of the concentrated extract was determined
using a diffusion test on a microtiter plate. Burkholderia sp. was cultivated in King B
medium, followed by the dilution of 30μL in 200μL of the same medium using
microtiter plate. The organic extract (500μg) and 5% DMSO (30μL) were added, and
the plate was incubated for 24 h. In the absence of Burkholderia sp. growth, the
extract was evaluated to be positive for antibacterial agents. Burkholderia sp. was
not inoculated into the negative control, and gentamicin (0.2μg/mL) was added to
the positive control as per the report (Balouiri et al. 2016; Betancur et al. 2017).
Besides being potential producers of antibiotics, actinomycetes are susceptible to a
few important antibiotics as listed (Table 2.1).

The activity of marine bacterial extracts against fungi was also examined. Fungal
cultures on potato-dextrose agar plates were collected in 0.85% aqueous NaCl
solution, and the suspension was inoculated into PDA (2 mL) in a well. The bacterial
extract (500μg) dissolved in 5% DMSO (30μL) was added, and after 96-h cultiva-
tion, fungal growth was evaluated. Positive controls contained clotrimazole (5μL of
1% solution), and fungi was not inoculated to the negative controls (Betancur et al.
2017).

Table 2.1 Effective concen-
tration of antibiotics on
actinobacteria

Name of the antibiotics Concentration per mL

Erythromycin 15 and 30μg
Aureomycin 30μg
Gentamicin sulfate 10μg
Kanamycin 15μg
Amikacin 30μg
Chloramphenicol 30μg
Novobiocin 5 and 30μg
Ciprofloxaci 10μg
Penicillin G 10 U

Tetracycline 10 and 30μg
Vancomycin 10μg
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2.4.2 Marine Strain Quorum Quenching actions

A plate assay for disc diffusion to screen for antagonists of quorum sensing
(QS) signals has been developed and proven to be suitable for marine bacteria as
well (Betancur et al. 2017; McLean et al. 2004; Tello et al. 2012). The biosensor
indicator Chromobacterium violaceum ATCC31532 synthesizing acylated
homoserine lactones (AHLs) was inoculated on agar plates, where discs (diameter
5 mm) with the marine bacterial extract (300μg) were placed. The QS inhibition
affects AHL-related signaling. After 24-h incubation, quenching molecules were
assessed for the lack of production of purple violacein pigment in the discs sur-
rounding, while the occurrence of growth inhibition was judged to be due to
antibacterials. In positive controls, 4-hydroxybenzaldehyde (200μg) was added to
the disc, and in negative controls, 300μL of DMSO (5%) was added.

2.5 Future Prospective

Microbes inherently possess unique biotechnologically important secondary metab-
olites (Jayachandra et al. 2013a, b; Anil Kumar et al. 2010). Extensive investigations
have been carried out in screening the terrestrial ecosystem, and a large number of
actinobacteria have already been explored for the production of interesting bioactive
compounds (Mohan et al. 2015a, b). However, much research is still required to dig
up coastal regions, slat pan, sponge, salt marshes, and other marine environments as
sources of novel marine microorganisms, mainly marine actinobacteria. Marine
actinobacteria have the ability to thrive well at a high concentration of salinity,
pressure, and pH and thus improve the possibilities of using such microbes in
industrial applications, as these industrial processes usually operate at relatively
high temperatures, pH, and pressures. Most excitingly, these actinobacteria from
marine origin have gained enormous potential for sustenance at adverse environ-
ments. Marine organisms could have a remarkable hidden genome with efficient
novel genes that would only be expressed if specific substrates were provided.
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Chapter 4
Extremophilic Actinobacteria

Jayachandra S. Yaradoddi, Merja H. Kontro, Nagaraj R. Banapurmath,
Sharanabasava V. Ganachari, M. B. Sulochana, Basavaraj S. Hungund,
Zareen Kousar Kazi, S. K. Anilkumar, and Ajaykumar Oli

Abstract In nature, we can see many hostile or extreme environments, as these
environments have made life more difficult to survive. Harsh environments can be
designated as any considerably high change in the extent of chemical (pH, water
content, organic solvents, and salt concentration) or physical variations (osmotic
pressure, temperature, pressure, and radiation). Extremophilic organisms are rare
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organisms that can thrive well in these adverse physicochemical conditions. The
discovery of novel actinobacterial species may lead to the recovery of new second-
ary metabolites. In another sense, the metabolites from the extremophilic
actinobacteria have received immense value in harsh industrial applications.
Extremophilic actinobacteria can be classified into thermophilic, psychrophilic,
barophilic, acidophilic, alkaliphilic, halophilic, osmophilic, saprophytic, and
xerophilic based upon their inherent properties. Apart from these extremophilic
actinobacteria, there is a particular category of extreme tolerant actinobacteria in
various environments. However, lots of research work needs to be carried out in the
exploration of these groups of actinobacteria—both extremophilic and extreme
tolerant actinobacterial communities’ genomes inherently have novel potential bio-
active compounds. However, the only fraction of the diversity of the extremophilic
or extreme tolerant actinobacteria is known, but they have got enormous potential.

Keywords Extremophilic actinobacteria · Temperature · Pressure · Radiation ·
Acidophilic · Alkaliphilic actinobacteria

4.1 Introduction

4.1.1 Major Sources of Extremophilic Actinobacteria

Numerous environments could be known as extreme, moreover concerning chemical
(salinity, pH, water content) or physical constraints (pressure, temperature, radia-
tion) (Bull 2011). Organisms living in such an environment are known as
extremophiles; these extremophilic organisms prefer to grow in the wide ranges of
these physicochemical parameters (Yaradoddi et al. 2020a; Yaradoddi and
Sulochana 2020). Despite these unique characteristic features, numerous microor-
ganisms, denoted as extremotrophs, can able to grow; however, not basically
adjusted despite the extreme environmental conditions such sas nutrient-depleted
situations, those organisms can be considered as oligotrophs instead oligophile (Bull
2011). A number of Actinobacteria are isolated from a total range of extreme
conditions.

The existence of alkaliphilic, acid-tolerant, thermotolerant, psychrotolerant,
alkali-tolerant, halotolerant, xerophilous, and halo alkali-tolerant Actinobacteria
has been described (Lubsanova et al. 2014). The novel chemodiversity is extra
likely to be in rarely cultured strains. Consequently, the multiplicity among the
extreme biosphere could help to address the challenges in rediscovering earlier
known secondary metabolites to a significant period of time, because of this motive,
exploration of the flourishing Actinobacteria in harsh conditions in recovering novel
strains with immense industrial value. Though several widespread types of research
were employed in the exploration of bacterial diversity, especially in the arid
ecosystems, the multiplicity of Actinobacteria by such environmental conditions
was not wholly investigated (Okoro et al. 2009).
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4.2 Arid Niche and Subsistence of Biogeographical Barriers

Arid habitats encompass huge continental environment (which covers about 30%
among the Earth area; within that, 7% is hyperarid) that is water proscribed. These
arid or dry regions known as biomes by means of a ratio of average yearly rainfall
denoted annual disappearance lower than 0.05 and slightly below 0.002 for
hyperarid regions (Bull 2011). The extreme dried and aridity sorroundings in higher
arid deserts is often acquired by higher temperatures, nutrient depletion, lower aw
(water activity), and prevailing radiation, whereas in some other ecosystems, lower
temperature, pH, high salinity, higher metal concentration such as sulfate or nitrate
and inorganic oxidant anions can be seen under arid regions (Koeberl et al. 2011).

Among all, the inaccessibility of aquatic resources and nutrients is the prime
restraining factor for biological activity under arid and semiarid habitats (Saul-
Tcherkas et al. 2013). Bacteria present in low water activity ecosystems inevitability
of distribution higher energy to collect at a definite quantity of water and also the
important robust bacteria typically arise, a condition of hydrobiosis as soon as aw
(water activity) is concentrated about 0.88 aw, wherein the cells detained just before
metabolize, though, persist workable (Connon et al. 2007; Yaradoddi et al. 2020b).
Bacteria that thrive well in arid ecosystems can adjust to drought condition yet water
is essential for their physiological requirements. Utmost occurs adjoining near mineral
soils mainly halites, gypsum, or quartz; by spreading, a little water surrounds within
mineral soils adequate for the bacterial growth and activity (Azua-Bustos et al. 2012).

Arid or dry zones are the interface alongside of the vegetated semi-arid
regions, that also contains biologically infertile hyper or extreme arid desert ecosys-
tems (Neilson et al. 2012). These regions harbor various untapped thermophilic,
xerophilic, alkaliphilic, and halophilic Actinobacteria producing novel bioactive
compounds. Adapting potential new techniques can lead toward the detection of
culturable bacterial communities in deserts that were hypothetical to be infertile
(Koeberl et al. 2011). The desert ecosystems are unique environments to tap the
novel extremotrophs or extremophilic strains of Actinomycetes, they can be
explored to yield new metabolites, Actinobacteria have possessed tolerance to
desiccation, and solute stress among bacteria and these organisms were reported
from the various antagonistic environment such as arid or hyper arids desert, which
are supposed to be similar to habitats on Mars. However, high levels of propagation
and that produce 0.5 aw are described. Actinobacteria especially non-halophilic
actinomycetes are generally improbable to be metabolically active beneath 0.8 aw,
but they might be ecologically active in water-suppressed microhabitats in soil that
comprise water activity slightly higher than this value (Stevenson and Hallsworth
2014). In spite of the different geographical range of arid environments, a very
minute is familiar in relation to the bacterial communities of these ecosystems with
diverse metabolic activities. As for this concern, several reports are accessible in
relation to the isolation, screening, and environmental diversity of rare actinomy-
cetes inhabited in the desert habitat (Harwani 2013). In addition to this, habitats that
alternate to the soils are besides deliberated as the novel basis in water-scarce
conditions (Azua-Bustos et al. 2012).
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4.3 Xerophiles Recovered Under Arid Environments

The actinomycetes recovered under extreme warm or acidic environments using
hyper radiation or aridity situations (like a desert and new arid ecosystems) are
inclined toward characteristically deepest genera of actinomycetes
(Rubrobacteridae, Acidimicrobidae). The higher dry state of deserts has been one
of the most dynamic environments for the progression of DNA repair mechanisms,
which has produced tolerance toward the ionizing radiation (Gamma and UV),
distinguished by numerous desert-based Actinobacteria (Makarova et al. 2001).
The most resilient genera from such environments are strains of Geodermatophilus
and Deinococcus that can resist up to 30 Gy of radiation. Members of this genus are
not so far isolated from the non-arid soil, even employing radiation treatments. The
xerophilic Actinobacteria, G. siccatus, and Geodermatophilus arenarius were
recovered from Sahara deserts in Chad (Montero-Calasanz et al. 2013). Another
important member of the genera Geodermatophilus has been reported from Negev
Desert soil, and Actinoplanes and Streptomyces strains were recovered from Mojave
Desert soil and California-Nevada border, through selective chemoattractants
(Kurapova et al. 2012). The Geodermatophilaceae comprises two other genera
such as Modestobacter and Blastococcus, which thrive well in water and nutrient
limiting conditions; Geodermatophilus chooses dry soils as usual environments
among 15 species designated in this genus; at least nine species are recovered
from the desert’s region (Euzeby 2015). In contrast, Modestobacter and
Blastococcus are occupied in rock surfaces. Apart from this actinobacterium which
was discovered from the desert ecosystem in Egypt, Citricoccus alkalitolerans was
designated as alkali tolerant, and maximum growth can be seen at pH 8.0–9.0
(Li et al. 2005a). New strains of the nonsporulating actinomycetes Mycetocola
manganoxydans which have capability to bring oxidation of manganese ions were
recovered within Takalime Desert (Luo et al. 2012). Associated with the Terra
bacteria genera are also categorized by its adaptation to the radiation, high salinity,
and desiccation. Concerning the members of the genera Streptomyces, mainly
Streptomyces deserti initially reported under hyperarid Atacama Desert can be
seen in arid habitats (Santhanam et al. 2013); Streptomyces bulliiwas from hyperarid
Atacama Desert, and the moderate thermophilic Streptomyces sp. 315 are
xerotolerant in Mongolia Desert soil (Kurapova et al. 2012).

Apart from the Streptomyces, strains belonging to Saccharothrix, Strepto spo-
rangium, Cellulomonas, andMicromonospora were isolated from the Qinghai-Tibet
Plateau (Ding et al. 2013a), whereas Actinomadura, Nocardiopsis, and
Micromonospora were recovered from soda saline soils of ephemeral salt lakes in
Buryatiya (Lubsanova et al. 2014). Thermophilic and thermotolerant actinomycetes
can be seen much abundantly, sometime beyond that of the neutrophilic forms in
Mongolia Desert soil. Other members of the Actinomadura, Streptomyces,
Streptosporangium, and also Micromonospora are utmost extensively spread
thermoresistant species in deserts soils. Numerous members of Streptomyces,
which belonged to actinobacterial genera Nocardia, Micromonospora,
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Saccharopolyspora, Nonomuraea, and Nocardiopsis, were also reported from the
Arabian Sea, solar salterns of the Bay of Bengal, and inland surrounding the
Sambhar Salt Lake (Jose and Jebakumar 2012). However, surprisingly it has been
revealed that Actinobacteria in desert soil land dominated 20.7%, whereas agricul-
tural soil comprises 4.6% relatively in poorer quantity in farmland when compared
with desert ecosystem (Ding et al. 2013b). Especially concerning to the genera
Rhodococcus, an Actinobacteria has dominated in desert soil. More specifically,
tolerant to the salinity (Actinobacteria obtained using saline soil of the infertile
territories), higher temperature, alkaline situation, and drought have been practically
proven. It was understood that all the halotolerant strains (strains can able to grow up
to 5% NaCl), unlike non-halophilic isolates, have the potential to grow in medium
with pH 10, whereas non-halophilic strains do not have such potentials. In this
prospect, a moderate thermophilic strain of Streptomyces sp. which was recovered
from desert soil was practically demonstrated as a xerotolerant. The halotolerant and
alkaliphile Streptomyces aburaviensis reported from the salt arid region of Kutch in
India have an antagonistic effect against Gram-positive bacteria. The strain was able
to grow slowly at 15% NaCl and in neutral pH, whereas the maximum growth was
observed in 5–10% NaCl and at pH 9 (Thumar et al. 2010). The mesophilic
actinobacteria from the Mongolian desert soil habitat belonged to the genera Strep-
tomyces, while thermotolerant organisms belonged to the genera Actinomadura,
Micromonospora, and Streptosporangium. Plant associated with Actinobacteria
from desert origin also exists. Concerning to drought-tolerant endophytic
Actinobacteria, S. olivaceus DE10, S. geysiriensis DE27, and Streptomyces
coelicolor DE07 were isolated from plants of arid and drought-affected areas.
These strains demonstrated plant growth promotion (PGP) activity similar to other
bacterial (Sulochana et al. 2014a, b) and inherent tolerance to water stress (�0.05 to
�0.73 MPa) (Yandigeri et al. 2012). Roughly extremophile bacteria, mainly
Deinococcus-Thermus, Rubellimicrobium, and Acidimicrobium intensely have
below stated agricultural use.

In contrast to this, original desert bacteria can enhance plant health in desert agro-
based ecosystems. Actinobacteria in lower water activity regions of Antarctica
(comparable condition in desert habitat) were pronounced. The bacterial multiplicity
of Lake Hodgson and the Antarctic Peninsula comprises 11.6% Chloroflexi, 20.2%
Plantomycetes, 21% Proteobacteria, and 23% Actinobacteria (Pearce et al. 2013).
Although from Dry Valley soil of Antarctic, the Actinobacteria (26%),
Acidobacteria (16%), and Cyanobacteria (13%) belonged to the majority of the
recognized as resident bacteria (Smith et al. 2006). The culture-independent evalu-
ation of different domain bacterial variety in the cold desert of the McKelvey Valley
established which is very specific communities to be colonized in discrete lithic
habitats can be seen concurrently among this ecosystem. In spite of relatively barren
soil, the maximum part of variety was found in chasmoliths and endoliths of sand
stone. The complete phylum level structures of numerous arid regions are indicated
to be dominated by the Actinobacteria. They were also disclosed to be most
abundant phyla about 72–88% from areas of Atacama Desert (Crits-Christoph
et al. 2013), whereas in other dry area, they are among the three predominant
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phyla (generally along with the Proteobacteria and Firmicutes) in the deserted soil
of the Aridic Calcisols in Kazakhstan (Kutovaya et al. 2015), alkaline-saline (Keshri
et al. 2013), deserts comprising shrub root zone (Steven et al. 2012), and elevated
deserts (Lynch et al. 2014). The dominant genera of Actinobacteria are not yet
described as per metagenomic studies in concern, except the studies focused on
haloalkaline semiarid regions in India, wherein two-thirds of the Actinobacteria
clones were identified among order Rubrobacterales (Keshri et al. 2013).

4.4 Mixed Extreme Environments

Among other extreme environments, brief structures of two ecosystems detailed here
are water polluted sites and inland. The inland waters comprised of salt and soda
lakes could be unseemly on primary encounter of freshwater lakes, nevertheless the
circumstantial attention on freshwater lakes turns around their high radiation expo-
sure and their oligotrophy. Recently, there have been distinctive freshwater bacteria
identified (Zwart et al. 2002); mostly, the predominant category belonged to
Actinobacteria (70%), and they have been considered as ultrasmall microorganisms
(Hahn et al. 2003). Warnecke et al. in the year 2005 ensured that the bacteria of
planktonic origin dominating in the high altitude and in ultraviolet (UV) transparent
lakes were native actinobacteria; however, it has been cautioned that the adjustment
to ultraviolet stress was relatively, not essentially, causal. At present, no such pure
strains have recovered from these original actinobacteria concerning to the UV
tolerance. The cocultures and phylotypes of these freshwater organisms are often
associated with the representatives of Micrococcineae, and more recently, Hahn has
identified the potential novel monophyletic and recently has described a novel
monophyletic group among family Microbacteriaceae (Hahn 2009). Seven new
species were recognized but again lonely as candidate species because pure and
isolated cultures have not been accomplished; the helper bacteria mostly related
proteobacteria are required to form quite close interaction to allow the development
of the actinomycetes. The mechanism about this interaction remains unknown.
Aside from freshwater, inland waters such as soda and salt lakes are also abundant
sources of new actinobacteria; soda lake-derived organisms consist of Nitriliruptor
(Sorokin et al. 2009), Yonghaparkia (Yoon et al. 2006), andMicrocella (Tiago et al.
2005). However, the Nutriliruptor alkaliphilus is probably the exciting organism
because it is the first identified member of a novel, extremely branched order within
the Actinobacteria, and it is moderately halophilic, obligatory alkaliphilic and can
able to grow in a range of nitriles. Also, thermophilic actinobacteria have been
recovered from hot springs (Rubrobacter (Chen et al. 2004)), whereas the first
culture-independent methods have revealed the foremost diversity of actinobacteria
most commonly seen within the environments of higher temperature (81 �C) (Song
et al. 2009); the significant phylotypes and associated members include the
Rubrobacteriales and the actinobacteria suborder Frankineae. The salt lake is
embedded with the presence ofHaloactinospora (Tang et al. 2008),Haloglycomyces
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(Guan et al. 2009), and Streptimonospora (Cui et al. 2001). However, the culture-
based methods can be more beneficial in isolation and maintenance of the potential
microbial consortia for various industrial applications (Anil Kumar et al. 2010;
Jayachandra et al. 2013a; Mohan Reddy et al. 2015a, b; Jayachandra et al. 2013b).
There are numerous actinomycetes reported for their antimicrobial activities such as
antifungal, antibacterial, antitrypanosomal, antiparasitic, etc. (Table 4.1). Recently
we could be able to recover potential lignocellulose degrading actinobacteria from
the compost samples in Finland (Fig. 4.1).

Table 4.1 Bioactivity of compounds extracted from various actinomycetes

Compounds Actinomycetes Action

Sclerothricin Streptomyces sp. Antifungal activity

Lomofungin Streptomyces lomondensis Antifungal

Spoxamicin Streptosporangium oxazonolinicum Antitrypanosomal

Antimycin Streptomyces sp. Antifungal

Avermectin Streptomyces avermitilis Antiparasitic

Rosamicin Micromonospora rosaria Antibacterial

Roseoflavin Streptomyces dawavensis Antibacterial

Validamycin Streptomyces sp. Antifungal

Rifamycin Micromonospora rifamycinica Antibacterial

Fig. 4.1 Indicating
potential strain of
thermostable actinobacteria
from compost sample

4 Extremophilic Actinobacteria 61



4.5 Actinobacteria in Alkaline Soils

In traditional terms, actinobacteria which are the organisms that are tolerant to the
environmental conditions recognized as mycelia prokaryotes occurring under alka-
line conditions have been investigated. The actinobacteria isolate grown well on
alkaline media were initially described by Baldacci (1944). The alkaliphilic actino-
mycetes were recovered from a variety of soils by Taber (1960). These
actinobacteria are reportedly recovered from soda lakes and saline soils. Mycelial-
forming bacteria of the Geodermatophilus genera employ specific life cycle amount
to the multiple part of the microbial consortium in desert ecosystems, plants of the
Kyzylkum Desert, salt crust, desert, and solonchaks in the southern coastal regions
of the Aral and Dead seas (Dobrovol’skaya 2002). On the other hand, these
actinobacteria were not studies from the perspective of their resistance capacity to
higher pH and a higher concentration of salinity. Before, a considerable amount of
information on the isolation of alkalophilic actinobacteria from the soils and
concerned substrates has been utilized. During one of the study, the amino acid
composition of the cell wall of certain alkaliphilic actinobacteria (Mikami et al.
1982; Yoshida et al. 1979) reported the occurrence of a mesoisomers of DAPa
(diaminopimelic acid) in some of them. The alkaliphilic types of bacteria not only
were restricted to the Streptomyces genus but also common among other genera such
as Streptoverticillium, Elytrosporangium, Microellobosporia, Nocardioides,
Chainia, Sporichthia, Saccharothrix,Micromonospora, and Nocardiopsis (Prabahar
2004; Prauser 1976a, b). Thereafter, they were grouped under alkaliphilic
actinobacteria to few of the abovementioned genera confirmed by using 16S
rRNA gene sequence analysis (Antony-Babu et al. 2003). Previous reports also
revealed these alkaliphilic actinobacteria could be resulted in the description of
new taxa (Kroppenstedt and Evtushenko 2004; Nakajima et al. 1999) and biologi-
cally active substances synthesized by novel species, alkaline proteases, and new
antibiotics (Sato et al. 1983; Song et al. 2001).

Several attempts able to divide the alkaliphilic isolates according to their require-
ment for acidity were mentioned in the literature. Few authors (Jiang and Xu 1993)
distinguish the extremes as alkaliphilic actinobacteria with an optimum growth rate
at pH 10–11 and not viable at pH 7.0; moderate alkaliphilic can be classified based
on the pH 10 but weakly grows at pH ranging between 6.0 and 11.0. As per the
report of Jiang et al., the alkaliphilic type can be classified into 2 groups: alkaliphilic
with the optimum growth at pH ranges between 9.0 and 9.5 and growth stops at
8.0–11.5 and alkali tolerant with the optimum growth occurs at pH 7.0 and growth
stops at pH 11.5. The range of the pH value optimum toward the growth of the
isolates was analyzed, measuring the intensity of incorporated adenine into the cell
wall. For alkaliphilic actinobacteria, this intensity is maximum at pH between 9.0
and 9.5. Till now, a great amount of information is available on the recovery of
actinobacteria in unusual requirements for the acidity of the environment has
accumulated. However, there is a lack of data on the regular distribution of popu-
lation, and ecological persistence of the alkaliphilic actinobacteria is not yet
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widespread. There is also scarcity of detailed descriptions of taxa belonging to
mycelial prokaryotes by unique pH requirements. As per the literature, the issues
are associated with the specific property of secondary metabolism in alkaliphilic
actinobacteria for the production of antibiotics (Mikami et al. 1986), and thus the
synthesis of alkaline-stimulated enzymes (Sato et al. 1983) is most commonly
considered, or novel taxa among the alkaliphilic and acidophilic actinobacteria
were reported (Tsuchiya et al. 1997; Li et al. 2005b; Wael et al. 2004; Wang and
Ruan 1994; Wang et al. 2001, 2004). The likely occurrence of the mycelia bacteria
under alkaline medium is of no doubt. Applied methods like TEM can be used in
understanding the structural morphology and behaviors of actinobacteria (Fig. 4.2).

4.6 Prospective

Several properties of these isolates have been investigated (Hozzein et al. 2004);
however, the ecology of alkaliphilic actinobacteria is poorly understood. There are
huge opportunities in exploration of the actinobacteria complexes in a broad range of
soils and artificial substrates and the identification of the taxonomic structure and
ecological specificities of alkaliphilic actinobacteria, corresponding to the places of
these mycelia bacteria under the microbial consortia of alkaline and saline soils and
which could significantly contribute toward the understanding of biological diver-
sity. The soils by means of their pH values (saline chestnut, saline alluvial meadow,
meadow solonchaks, semidesert brown, and crusty) were studied. With the high

Fig. 4.2 TEM micrograph of actinobacteria: Cellulomonas sp.
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alkaline (pH >8) soils, numerous actinobacterial species were recovered by culti-
vating on medium with pH 9 which was quite high compared to neutral and,
specifically, on the acidified media (Selyanin et al. 2005). This excess can be seen
interestingly in the solonchak by about pH 9.5 produced within the underneath of the
dried salt lake in Buryatia. On the substrate, numerous actinobacterial species can
grow under alkaline medium conditions that surpass the density that was isolated
under acidic pH. Reportedly in every soil that was investigated at above pH 7,
numerous actinomycetes were recovered under the alkaline medium, which was
relatively higher as compared to that cultivated under neutral conditions.
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