ShikshanHaach Dharma S.A.P.D. Jain Pathashala's (Jain Minority Institute)

Walchand College of Arts & Science, Solapur (Autonomous College)

(Affiliated to P.A.H. Solapur University, Solapur)

Name of Faculty: Science & Technology

New Choice Based Credit System (CBCS) (According to NEP 2020)

M.Sc. Part-I

Subject: Genetics

w.e.f. 2023-24

Walchand College of Arts & Science, Solapur

(Autonomous)

About National Education Policy (NEP) - 2020

With the directions and guidelines issued by **Government of Maharashtra resolution dated 20th April 2023 and 16th May, 2023** regarding the implementation of NEP at UG and PG level, the Walchand College of Arts & Science (Autonomous), Solapur has taken decision to implement NEP 2020 with Choice Based Credit System (CBCS) at Undergraduate level and Post Graduate level. This has been done to achieve the goals and objectives set in NEP-2020 such as- worldwide recognition, acceptability, horizontal as well as vertical mobility for students completing undergraduate and post-graduate degree.

The CBCS provides an opportunity for the students to select from the prescribed courses comprising core, elective/minor or skill based. The courses can be evaluated following the grading system, which is considered to be better than the conventional marks system. Therefore, it is necessary to introduce uniform grading system in the entire higher education in India. This will benefit the students to move across institutions within India to begin with and across countries. The uniform grading system will also enable potential employers in assessing the performance of the candidates. In order to bring uniformity in evaluation system and computation of the Cumulative Grade Point Average (CGPA) based on student's performance in examinations.

Outline of NEP:

The structure of the Three/Four-year bachelor's degree programme allows the opportunity to the students to experience the full range of holistic and multidisciplinary education in addition to a focus on the chosen major and minors as per their choices and the feasibility of exploring learning in different institutions. The structure allows students to learn various components like:

(a) Major (Core) Subject (DSC): This comprises of Mandatory and Elective Courses that require students to achieve:

- Minimum 50% of total credits corresponding to Three/Four year UG Degree- Mandatory Courses are offered in all four years;
- 2 credit course on Major Specific IKS shall be included under Major;
- Elective courses of Major will be offered in the third and/or final year;
- Vocational Skill Courses, Internship/ Apprenticeship, Field Projects, Research Projects are related to Major

(b) Minor Subject (18-20 Credits)

- The Minor subjects may be from the different disciplines of the same faculty of DSC Major (Core) or they can be from different faculty altogether;
- The credits of Minor subjects shall be completed in the first three years of UG Programme

(c) Generic/ Open Elective Courses (OE) (10-12 credits)

- GE/OE are to be offered in I and/or II year;
- Faculty-wise baskets of OE shall be prepared by Autonomous College.
- OE/GE is to be chosen compulsorily from faculty other than that of the Major or as per the directions issued by NEP-Steering Committee

(d) Vocational and Skill Enhancement Courses (VSEC)

i) Vocational Skill Courses (VSC): (8-10 credits): Includes Hands on Training corresponding to the Major and/or Minor Subjects:

- To be offered in first three years;
- Wherever applicable vocational courses will include skills based on advanced laboratory practicals' of Major

ii) Skill Enhancement Courses (SEC): (06 credits)

- To be offered in I and II year;
- To be selected from the basket of Skill Courses approved by Autonomous College

(e) Ability Enhancement Courses (AEC), Indian Knowledge System (IKS) and Value Education Courses (VEC): (14 Credits)

i) AEC: (08 credits)

- To be offered in I and II year
- English: 04 Credits
- Modern Indian Language: 04 credits
- To be offered from the Basket approved by Autonomous College;

The focus for both languages should be on linguistic and communication skills.

ii) IKS: (2 Credits)

- To be offered in I Year
- Courses on IKS to be selected from the basket of IKS courses approved by Autonomous College

iii) VEC: 04 Credits

- To be offered in I year
- Value Education Courses (VEC) such as Understanding India, Environmental Science/Education, and Digital and Technological Solutions.

(f) Field Projects/ Internship/ Apprenticeship/ Community Engagement and Service corresponding to the Major (Core) Subject, Co-curricular Courses (CC) and Research Project

- Internship/Apprenticeship corresponding to the Major (Core) Subject: (8 Credits)
- Field Projects/Community Engagement and Service (CEP) corresponding to the Major (Core) Subject (minimum 4-6 credits)
 To be offered in II and III years of UG Degree Programmes.
- Co-curricular Courses (CC) such as Health and Wellness, Yoga education, sports and fitness, Cultural Activities, NSS/NCC and Fine/ Applied/Visual/ Performing Arts: (8 credits)
 - -To be offered in I and/or II year
- Research Projects: (12 credits)
 -To be offered in the final year for 4 year Honours with Research UG Degree

> CREDIT:

- Credit is a numerical value that indicates students work load (Lectures, Lab work, Seminar, Tutorials, Field work etc.) to complete a course unit. The contact hours are transformed into credits. Moreover, the grading system of evaluation is introduced for B.Sc. course wherein process of Continuous Internal Evaluation is ensured.
- Theory: '15 contact hours' for theory course constitute 'one credit'
- Practical/Tutorial: '30 contact hours' for practical course constitute 'one credit'.
- Workshop based activities/Skill based activities: Minimum 30 contact hours per credit in a semester is required
- Internship/On-Job Training: '30 contact hours' per credit in a semester is required (1 credit/week)
- Community Engagement and Service-CEP/Field Project: '30 contact hours' per credit in a semester is required

Credit Framework under Three/Four Years UG Programme with Multiple Entry and Multiple Exit Options:

Levels	Code	Qualification Titles	Credit Requirements		Semeste r	Year
			Minimum	Maximum	-	
4.5	100-199	UG Certificate	40	44	2	1
5.0	200-299	UG Diploma	80	88	4	2
5.5	300-399	Three Year Bachelor's Degree	120	132	6	3
6.0	400-499	Bachelor's Degree Honours	160	176	8	4
		OR				
		Bachelor's Degree-Honours with Research				
	500-599	First Year PG & or PG Diploma	40	44	2	1
6.5	600-699	PG Degree	80 88		4	2
8.0	700-799	Ph.D.	16+ Ph.D. Work		-	-

The minimum and maximum credit structure for different levels under three or four year UG programme with multiple entry and multiple exit options are as given below:

Multiple Exit Options

Year	Exit Option	Re entry
First Year	Award of UG Certificate in Major with 40-44 credits and an additional 4 credits core NSQF course/Internship OR Continue with Major and Minor	Students opting for exits at any level 'will have the option to reenter' the programme from where they
Second Year	Award of UG Diploma in Major and Minor with 80-88 credits and an additional 4 credits core NSQF Course/Internship OR Continue with Major and Minor	had left off, in the same or in different higher educational institution 'within three years of exits' and complete
Third Year	Award of UG Degree in Major with 120-132 credits OR Continue with Major and Minor	the degree program within the stipulated maximum
Fourth Year Honours	Four Year UG Honours Degree in Major and Minor with 160-176 credits	period of 07 years from the date admission of first year
Fourth Year Honours with Research	Four Year UG Honours with Research Degree in Major and Minor with160-176 credits	of UG.
	Post-Graduation Degree	
Post-Graduation: First Year	PGDiploma(44Credits)after ThreeYear UGDegree	Reentry to complete the PG degree after taking exit option will be permissible

	up to 5 years from the date
	admission to PG programme

> Academic Bank of Credit (ABC):

It is mandatory for all admitted students to get enrolled on ABC Portal and create ABC ID and share ABC-ID with academic institutions where they are enrolled. Credits earned by the students will be reflected in the students ABC account. This will allow students smooth transition during multiple entry and exit.

Faculty of Science: Choice Based Credit System (CBCS) (w. e. f. 2023-24)

Preamble: This course provides a broad overview of Genetics and to produces expert hands that would have sufficient knowledge and expertise to solve the urgent problems of the region by using Genetics. The course structure is technology-centric where students basically learn technology and are taught necessary fundamental and applied subjects for that purpose.

Objectives of the course: The objectives of M. Sc.-I Genetics course are:

- To provide an intensive and in-depth learning to the students in field of Genetics.
- Beyond simulating, learning, understanding the techniques, the course also addresses the underlying• recurring problems of disciplines in today scientific and changing business world.
- To develop awareness & knowledge of different organization requirement and subject knowledge through varied subjects and training methodology in students.
- To train the students to take up wide variety of roles like researchers, scientists, consultants, entrepreneurs, academicians, industry leaders and policy.

Eligibility and Admission:

Candidate passing Bachelor Degree with Life Sciences А Anv such as Biotechnology/Biochemistry/Chemistry/ Microbiology/Botany/Zoology/B. Pharmacy/MBBS/B. Sc. Agri, B.S.cEntrepreneurship, BAMS, Paramedical and who have passed the entrance examination conducted by the Walchand College of Arts and Science, Solapur (Autonomous) (WCAS) shall be held eligible for admission to M. Sc. Course in Genetics. Students from other University with B.Sc. General Degree and who have passed the entrance examination conducted by the WCAS, Solapur are also eligible. Merit list based on average of B. Sc. aggregate and entrance exam conducted by Walchand College of Arts and Science, Solapur (Autonomous).

Duration:

The duration of the M.Sc.-I course is of 1 year (comprising 02 semesters) and the duration for this program is of 2 years with semester pattern (04 Semesters)

Medium of Instruction: English

Pattern of the Course: The autonomous college follows semester pattern.

Walchand College of Arts & Science (Autonomous), Solapur

NEP Structure: M. Sc. Genetics w.e.f.2023-24

M.Sc. (Genetics)						
	Semester-	I				
Subject	Paper Title	Credits	Hours/week	Total Contact Hours		
Genetics (Mandatory)	Concepts of Genetics	4	4	60		
Genetics (Mandatory)	Cell and Molecular biology	4	4	60		
Genetics (Mandatory)	Biostatistics and Population Genetics	2	2	30		
Genetics (Mandatory)	Practical-I: Concepts of Genetics and Biostatistics	2	4 (hours/week/batch)	60		
Genetics (Mandatory)	Practical-II: Cell and Molecular biology and Population Genetics	2	4 (hours/week/batch)	60		
Genetics- Elective-I	Elective-I:CytogeneticsandGenome organizationElective-I : Clinical bioinformatics	2	2	30		
	Practical Elective-I:	2	4 (hours/week/batch)	60		
Genetics-RM	RM: Research methodology& Intellectual Property Rights	4	4	60		
	M.Sc.					
	Semester-l	I				
Genetics (Mandatory)	Plant breeding and tissue culture	4	4	60		
Genetics (Mandatory)	Concepts of Biochemistry	4	4	60		
Genetics (Mandatory)	Regulation of Gene Expression And Developmental Genetics	2	2	30		
Genetics (Mandatory)	Practical-III Plant breeding and tissue culture and Regulation of Gene Expression	2	4 (hours/week/batch)	60		
Genetics (Mandatory)	Practical IV Concepts of Biochemistry and Developmental Genetics	2	4 (hours/week/batch)	60		
Genetics- Elective-II	Elective-II: Advanced Microbial Genetics	2	2	30		

	Elective-II: Computational			
	structure biology and drug			
	designing			
	Practical Elective-II	2	4	60
			(hours/week/batch)	
Genetics-	OJT/FP: Industry training orfield	4	4	120
OJT/FP	project			
	M.Sc.			
	Semester-I	Π		
Genetics	Immunology and	4	4	60
(Mandatory)	Immunotechnology			
Genetics(Ma	Genetic Engineering	4	4	60
ndatory)				
Genetics	Cancer genetics and Stem cell	2	2	30
(Mandatory)	research			
Genetics	Practical-V:	2	4	60
(Mandatory)			(hours/week/batch)	
Genetics	Practical-VI:	2	4	60
(Mandatory)			(hours/week/batch)	
Genetics-	Elective-III: Molecular Medicine	2	2	30
Elective-III				
	Elective-III: Industrial			
	biotechnology and Bioinformatics			
	Practical Elective-III:	2	4	60
			(hours/week/batch)	
Genetics-RP	RP: Genetics Based Research	4	8	120
	Project			
	M.Sc.			
	Semester-I	V		
Genetics	Medical Biotechnology and	4	4	60
(Mandatory)	Bionanotechnology			
Genetics	Analytical Instruments	4	4	60
(Mandatory)				
Genetics(Ma	Practical-VII:	2	4	60
ndatory)	Medical Biotechnology and		(hours/week/batch)	
	Bionanotechnology			
Genetics	Practical-VIII: Analytical	2	4	60
(Mandatory)	Instruments		(hours/week/batch)	
Genetics-	Elective-IV: Agricultural science	2	2	30
Elective-IV	seed technology			

	Elective-IV: Animal tissue c	ulture			
	Practical Elective-IV:		2	4	60
				(hours/week/batch)	
Genetics-RP	RP: Genetics Based R	lesearch (6	12	180
	Project				

Outline of Examination

THEORY

1) Internal Evaluation (IE): Internal evaluation will consist of 40 % marks per semester per paper. It may be held as per the following scheme per semester (Annexure: I& II)

Credits	Marks for Attendance	Classroom Test	Home Assignment	Marks for Presentation/Group Discussion/ Participation/Field work/Study visit	Total Marks
02	05	10	05		20
04	05	20	05	10	40

2) End Semester Examination (ESE): The detailed question paper pattern (60% marks per paper) is given as in Annexure- IV; Annexure- V

PRACTICAL

1) Internal Evaluation (IE): Internal evaluation will carry 40 % marks and may consist of:

Credits	Marks for Attendance	Internal Practical Exam	Journal	Total Marks
02	05	10	05	20

2) End Semester Examination (ESE): Practical examination 60 % marks shall be conducted at the end of each semester. Annexure- VI

Walchand College of Arts and Science (Autonomous), Solapur (CBCS)Theory Syllabus M.Sc. I-Genetics (Semester-I)

w. e. f. 2023-24 **SEMESTER I**

Genetics (Mandatory) CONCEPTS OF GENETICS

Marks 10	0 4 Credits Con	tact Hrs-60		
UNIT	CONTENT	Hrs		
1	History of genetics. Laws of Inheritance: Mendel's Law of Dominance, segregation and Independent assortment. Test cross, Back cross, Co-dominance, Incomplete dominance, Allelic Interaction, multiple allele, Linkage and Crossing Over with suitable examples, Complementation test.	15		
2	 Sex linked Inheritance: Structure of Sex Chromosomes, Complete and incompletely sex-linked genes. Inheritance of XY linked genes, Y linked genes, X linked genes, Sex limited and Sex influence gene. Quantitative inheritance: Concept, Genes and Environment: heritability, Penetrance and expressivity. 	15		
3	DNA Damage: Mutation; Types - Spontaneous and Induced Mutations, Chemical and Physical Mutagenic agents, Mechanism of action of Mutagenic agents, Transposon mediated mutagenesis. Changes in Chromosome number and Structure. DNA Repair: Base excision repair (BER), Nucleotide excision repair (NER), Mismatch repair (MMR), Homologous recombination (HR), Nonhomologous end joining (NHEJ), Photo reactivation and Dark repair.	15		
4	Genetic Counselling: Overview of genetic counseling, components of genetic counseling, information gathering and construction of pedigrees and their interpretation. Psychological counseling, Patient education, Risk communication and decision making, Understanding genetic testing, Medical documentation.	15		
REFERE	NCE BOOKS:			
 Concepts of Genetics- Klug W. S. And Cummings M. R Prentice-Hall Genetics- a Conceptual Approach Pierce B. A. Freeman Genetics- Analysis of Genes and Genomes Hartle D. L. And Jones E. W. Jones & Bartlett An Introduction to Genetic Analysis- Griffith A. F. et al Freeman Principles of Genetics - Snustad D. P. And Simmons M. J. John Wiley & Sons. Genetics - Strickberger M. W. Prentice-Hall Genetics - B.D.Singh Genetics - Verma&Agrawal Genetics - P.K.Gupta Peter Snustad and Michael J Simmons (2009). Principles of Human Genetics. Fifth Edition. John Wiley & Sons, Inc. Strachan T and Paed A 2010 Human Molecular Genetics. Fourth Edition. Taylor and Erancis 				
11. Stracha 12. Ricki I	an 1 and Read A 2010 Human Molecular Genetics, Fourth Edition. Taylor Lewis (2009) Human Genetics-Concepts and Application. Ninth Edition.	and Francis		

12. Ricki Lewis (2009) Human Genetics-Concepts and Application. Ninth Edition.

McGraw-Hill College Publishers

About the course

The course deals with study of Genetics. Overall genetic study is must for a Genetics core course as they are fundamental to understand genome of important organisms, Mendelian genetics, non-mendelian genetics, mutation study, DNA Repair and Genetic courselling.

Learning outcomes

After successfully completing the course,

- The students will be able to understanding fundamental ideas of genetics, while exploring modern techniques and recent applications of genetic analysis.
- It will also provide explanation of complex analytical topics covering the areas of ethics towards society and case study.

Genetics (Mandatory) CELL AND MOLECULAR BIOLOGY

Marks 10	0	4 Credits	Contact Hrs-60
UNIT	CONTENT		Hrs

1	Cell structure and components: Prokaryotic and eukaryotic cell	15			
	structure, Cell division, Cell Cycle Phases, Cytoskeletal proteins, Motor				
	proteins, Inhibitors and activators of cytoskeleton, Cytoplasmic				
	Membrane: Chemical Composition of Membrane, Models of Plasma				
	membrane. Movement of substances across cell membrane –Passive				
	transport and Active transport.				
2	Cell-cell interaction and Signal Transduction : Cell-Cell Adhesion:	15			
	Extra-cellular space, Desmosomes, Hemidesmosomes, Integrins,				
	Selectins, Cadherins, Tight Junction, Gap Junction.G protein coupled				
	receptor, Tyrosine Kinase receptor - Ras- MAP Kinase pathway,				
	Hedgehog pathway, WNT signaling pathway, Notch Pathway, Nf- κ B,				
	JAK-STAT Pathway. Cell death: Apoptosis and necrosis.				
3	DNA replication in prokaryotes and eukaryotes - i) Initiation of	15			
	replication process: Origin of replication ii) Elongation: coordinated				
	synthesis of Leading and Lagging strands. iii) Termination: End of				
	replication.				
	Types of DNA Polymerases, Mechanism of Transcription in Prokaryote				
	and Eukaryotes -Initiation, Elongation and Termination, RNA				
	Polymerases.				
4	Translation and membrane trafficking: Genetic code and its	15			
	properties, Eukaryotic and Prokaryotic Translation. Membrane				
	Trafficking: Vesicular transport from Endoplasmic reticulum to Golgi				
	Apparatus				
	Gene editing and silencing: Antisense, RNAi, Micro RNA -				
	Mechanism and Examples, Ribozyme Tailor made for gene				
	silencing.CRISPR-, Discovery, CRISPR Knockout Basics CRISPR				
	Editing in Animal Models (Knockout and Knockin Strategies in Mice).				
REFERE	NCE BOOKS:				
1. Molecul	lar Cell Biology, Lodish et al. Scientific American Books (1995)				
2. The Wo	rld of the Cell Becker, W.M. et al. Benjamin Cummings (2004)				
3. Cell and	Molecular Biology, Karp G. John Wiley and Sons. (1999).				
4. Molecul	lar Biology of Cell, Alberts B et al. Garland Publishers, (2001)				
5. Principl	es of cell and Molecular Biology, Kleinsmith LJ & Kish VM, Harper Col	lins College			
Publishers(1995)					
About the	About the course				
Th	This course helps to understand molecular basis of cells as well as its work in healthy and				
diseased states. The study of this course increases knowledge a better understanding of different					
molecular	events take place in the cells.				
Learning	outcomes				

After successfully completing the course,

• The students will be able to gain in depth knowledge of biological and/or medicinal

processes through the investigation of the underlying processes that occur in and between cells and able to explain processes and their meaning for the characteristics of living organisms.

• Explain the growth, development, and behaviour of organisms are activated through the expression of genetic information in context. Students will learn about CRISPR and how it is applications

Genetics (Mandatory)BIOSTATISTICS AND POPULATION GENETICS

Marks 50	2 Credits Contact Hrs-30	
UNIT	CONTENT	Hrs
1	Fundamentals of Biostatistics: Introduction to Biostatistics, Population,	15
	Sample, Sample size, sampling methods, variable, classification of data,	
	Frequency Distribution, tabulation, graphical and diagrammatic	
	representation of data. Measures of central tendency- mean, mode &	
	median, Measures of dispersion- range, variance, standard deviation, and	

coefficient of variation. Probability-theory, types,	conditional &	
unconditional, Correlation- types, Scatter diagra	am, correlation	
coefficient (r), Regression- linear & multiple linear	r, coefficient of	
determination. Hypothesis testing-types, critical region,	, and type I & II	
error, t-test, Z-test, f-test, Chi-square test, P- value	of the statistic,	
ANOVA.		
2 Population Genetics: Introduction to population generation	enetics, Genetic 15	
polymorphism, Hardy-Weinberg genetic Equilibrium wi	ith example	
QTL mapping strategies; Statistical methods for m	apping QTL in	
experimental cross populations (experimental desig	n, linkage map	
construction, single-marker analysis, interval mapping	ng and multiple	
interval mapping), Estimation of breeding values and g	genetic variances	
in general pedigrees, association mapping, genomic sele	ection, direct and	
associative models of general group and kin selection	on, genotype by	
environment interaction models.		
REFERENCE BOOKS:		
1. DNA markers Protocols, applications and overviews- Anolles G.	C. &Gresshoff P. Wiley-	
2 Molecular markers in Plant Genetics and Biotechnology -Vienne	De D Science Publishers	
3 Genetics of Population-Hedrick P.W. Jones & Bartlett	De. D. Science i donsilers	
4 Principle of Population Genetics -Hartl D L and Clark A G Sina	uer Associates	
5 Biostatistics- Danial W W Wiley		
6 Statistical methods in Biology- Bailey NTI Cambridge Univ Pr	ess	
7 Statistical Genetics: Linkage Manning and OTL analysis Dan Hui Lin CDC Press		
8 Statistical Genetics: Gene Manning Through Linkage and Association	ation ed By B Neale	
M Ferreira S Medland D Posthuma Taylor Francis	ation, ed. by b iveale,	
9 The Fundamentals of Modern Statistical Genetics NM Lairdand	C Lange - Springer	
10 Computational Molecular Evolution 7 Vang 2006 Oxford Uni	versity Press	
10. Computational Molecular Evolution, Z Y ang, 2006, Oxford University Press.		
Agarwal Chand & Company I to Ram Nagar New Delhi-110.055	Nogys, 1.5. Verma and V.K.	
About the course	<u>, </u>	
ADVUL THE COULSE		

The course deals with study of biostatistics and population genetics. This course, recognize the importance of data collection and its role in determining scope of inference. The portion of population genetics, aims to introduce the study of the Hardy-Weinberg genetic Equilibrium and Quantitative Trait Locus (QTL) Mapping.

Learning outcomes

After successfully completing the course,

- The students will be able to define biostatistics and its relation with other subjects, restate the principal concepts about biostatistics and Data analysis.
- The students will explain population genetics and QTL mapping strategies.

Genetics (Elective I) CYTOGENETICS AND GENOME ORGANIZATION

Marks 502	2 Credits Contact Hrs-30	
UNIT	CONTENT	Hrs
1	Chromosome :History, Chromosome structure and types based on	15
	centromere, Chromatin structure, heterochromatin and euchromatin,	
	telomere and its maintenance, Special types of chromosomes,	
	Chromosome banding, painting and karyotyping, FISH and GISH, Extra	
	chromosomal inheritance: Mitochondrial, chloroplast and plasmids,	
	Mechanism of sex determination in plants, animals and Drosophila	

2	Gene and Genomics : Fine structure of gene, Genome organization in 15
	Prokaryotes and eukaryotes, organization of nuclear and organelle
	genomes, genome mapping: physical maps and functional genomics,
	repetitive DNA satellites and its significance, LINES and SINES,
	Transposable elements in prokaryotes and eukaryotes, Alu family,
	Multigene families, C value paradox
REFERE	NCE BOOKS:
1. Essentia	l Cell Biology -Alberts B. et al. Garland
2. Molecul	ar Biology of The Cell- Alberts B et al. Garland
3. The Eul	carvotic Chromosome- TBostock C. J. & Summer A. T.T Elsevier
4. The Chi	omosome- Hamsew and Flavell Bios
5. Advanc	ed Genetic Analysis- Hawley & Walker Blackwell
6. Structur	e & Function of Eukaryotic Chromosomes- Hennig Springer
7. Genes I	X- Lewin B. Pearson
8. Molecul	ar Cell Biology -Lodish, H. et al. Freeman
9. Cell and	Molecular Biology- De Robertis& De Robertis Lippincott & Wilkins
10. Genon	ne 3 -Brown T. A. Garland
About the	course:
The purpo	se of the course is to provide a working knowledge of cytogenetics, the preparation of
materials 1	for study, and the importance of chromosomal variations in structure and number in
such fields	as plant and animal breeding and the medical sciences.
Learning	outcomes
After succ	essfully completing the course,
• Th	e students will be able to acquire knowledge regarding genetic analysis and heredity.
• Ac	ivantage of genetics mapping to identify the relative position of genes based on their
nhe	enotypic effect.
1 P ¹¹	

• Genetics can help to identify certain conditions in peoples using various techniques to minimize the risk in future

Genetics (Elective I) CLINICAL BIOINFORMATICS

Marks 5	02 Credits Contact Hrs-30	
UNIT	CONTENT	Hrs
1	Next Generation Sequencing :	15
	Introduction, Process, Application, NGS Platforms & Techniques, NGS Tools: Data	
	& Data Formats, and QC tools PrinSek, BAM Stats FASTX Toolkit Fast QC, HTQC,	
	Pyro cleaner and QPLOT, NGS Methods: Reference Based Genome Assembly,	
	DeNovo Genome Assembly, Transcriptomics, Epigenomics, Genome Mapping,	
	Microarray Data Analysis, RNA Sequence Analysis and NGS Data Annotation	
2	Genome sequencing projects and applications:	15

HumanGenomeProject:Introduction,Applications,Challenges of HGP,Introduction to				
various genome sequencing projects (Name of genome organism) and their				
implications in human health and diseases, Comparative genome analysis, Genome				
data visualization using Ensemble and Map viewer.				

REFERENCE BOOKS:

- 1. Zentralblatt Math 2014:Next-generation Sequencing: Current Technologies and ApplicationsJianpingXuMcMaster University, Ontario, Canada, Caister Academic Press- I SBN: 978-1-908230-33-1.
- 2. Thakur, Nirja and Shirkot, Poonam, Pradesh, Himachal, Pandey, India and Rachappanavar, Kanika and Pandey, Himanshu and Thakur, Kanika and Kumar, Vinay. (2018). Next generation sequencing -Techniques and its applications. 1316-1320.
- 3. Liu L, Li Y, Li S, Hu N, He Y, Pong R. *et al.*, Comparison of next-generation sequencing systems. Bio Med Research International, 2012.
- 4. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, globalpathogen surveillance system. Nature Reviews Genetics. 2018; 19(1):9.
- 5. BentleyDR,BalasubramanianS,SwerdlowHP,etal.,Accuratewholehumangenomesequencingusing reversibleterminatorchemistry.Nature.2008; 456:53-59.
- 6. Pareek, Chandra &Smoczynski, Rafal&Tretyn, Andrzej. (2011). Sequencing technologies and genome sequencing. Journal of applied genetics. 52. 413-435. 10.1007/s13353-011-0057-x.

About the Course:

The course provides the extended knowledge of Next Generation sequencing genome and its storage in file formats also handling the data with bioinformatics tools. Handling the genome data, pharmacogenomics and medical informatics develop the understanding and applications in bioinformatics

Learning Outcomes:

After successfully completing the course,

- The students will be able to: Apply the knowledge in the use of NGS and its platforms.
- Enhance the understanding of medical, clinical and systems biology.
- Apply the sequencing projects for analysis of data.

M. SC. - I - GENETICS (SEMESTER –I)

GENETICS (Mandatory) PRACTICAL I: CONCEPTS OF GENETICS AND BIOSTATISTICS

50 marks

2 CreditContact Hours-60

- 1. Interspecific study of mitosis in Allium cepa and Allium sativum
- 2. Interspecific study of meiosis.
- 3. Problems on Mendelian Genetics: one factor & two factor with examples.
- 4. Problems on non-Mendelian genetics.
- 5. Problem on gene mapping.
- 6. To Study the effect of mutagens on germination, seedling growth and on mitosis.
- 7. Spontaneous mutation: Fluctuation test StrR.
- 8. Spontaneous mutation: Replica plate method-StrR
- 9. Measures of Central Tendency and Dispersion on Excel
- 10. Statistical Analysis using EXCEL (Diagrammatic and graphical presentation)

GENETICS (Mandatory) PRACTICAL II: CELL AND MOLECULAR BIOLOGY AND POPULATION GENETICS

50 marks

2 Credit

Contact Hours-60

- 1. Genomic DNA isolation from plants.
- 2. Genomic DNA quantification from Plant.
- 3. Restriction digestion of total DNA

- 4. Ligation of restricted DNA.
- 5. Isolation of organelle DNA.
- 6. Problems on t-test, Z test, & chi square test.
- 7. Examples based on pedigree analysis.
- 8. Examples based on Hardy Weinberg Equilibrium

Practical Elective I CYTOGENETICS AND GENOME ORGANIZATION50 marks2 CreditContact Hours-60

- 1. Preparation of polytene chromosome
- 2. Drosophila genetic crosses
- 3. Study of different morphology of nucleus
- 4. Identification of inactivated X chromosome as Barr body
- 5. Karyotyping analysis
- 6. Chromosome preparation from human blood lymphocytes.
- 7. Qualitative analysis of DNA melting temperature.
- 8. Problems on extrachromosomal inheritance.

Practical Elective I CLINICAL BIOINFORMATICS

50 marks

2 Credit

Contact Hours-60

- 1. Genomedatavisualization by usingEnsembleandMapviewer.
- 2. GenomeanalysisandcomparisonusingUCSCbrowser.
- 3. Genome Mapping using NGS Technology.
- 4. Different tools used for NGS data mapping BWA, Bowtie.
- 5. Understand and analyze the different file formats SAM, BAM.
- 6. Visualize the mapped data using the tool IGV.
- 7. Study online Next Generation sequencing resources and databases.
- 8. Study of PrinSek, BAMStats FASTX Toolkit FastQC, HTQC, Pyrocleaner and QPLOTtools.

RESEARCH RM: RESEARCH METHODOLOGY& INTELLECTUAL PROPERTY RIGHTS

Marks 1004 Credit Contact Hours-60		
UNIT	CONTENT	Hrs
1	 Research: Definition, Importance and Meaning of Research, Objectives, Characteristics, Types of Research. Steps in Research; Identification, Selection and Formulation of Research Problem, Research Design, Formulation of Hypothesis. Thesis and Manuscript writing: Abstract, Introduction, Review of literature, Materials and Methods, Results and Discussion, Summary and Conclusion, References. 	15
2	Manuscript writing: citation index, h-index, i10-index, ISSN and ISBN. Author instructions, criteria for publication. Preparation & presentation of Oral and Poster for conferences. Concept of plagiarism, Scientific proposal writing for funding agencies (UGC, CSIR, DBT, DST, ICMR and DRDO).Use of tools in Research report writing-Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX/MS Office, Software for detection of Plagiarism.	15
3	IPR and Patents: Intellectual property, Protection of Intellectual property, WIPO, Forms of protection- patent, copyright, trademark, trade secrets, geographical indications. Criteria for patent and procedure of patenting-India and PCT. Patenting of biological materials with examples and case studies, IP Infringement.	15
4	Plant breeder's right : Traditional knowledge, Biopiracy, International Union for the Protection of New Varieties of Plants (UPOV), Breeders exemption, Plant variety protection in India. Farmer's right, advantages and disadvantages of PBR. Technology transfer- Introduction, types of technology transfer and Indian scenario.	15

REFERENCE BOOKS:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Publications. 2 volumes.
- 4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 5. Wadehra, B.L. 2000. Law relating to patents, trademarks, copyright designs and geographical indications. Universal Law Publishing.
- 6. Text book of Biotechnology, P K Gupta
- 7. Text book of Biotechnology, B D Singh

About the course:

The course covers all the conceptual and methodological issues that go into successful conduction of research. That includes philosophy of science, the methodological issues in measurement, proposing and testing hypotheses, scientific communication and the ethical issues in the practice of science.

Learning outcomes:

After completely this paper students will learn following knowledge:

- Students will get useful information about Steps in Research and Sampling Techniques
- Students will be able to learn about Thesis and Manuscript writing.
- Students will know the importance of patents and IPR in processing their innovations

M. SC. GENETICS (SEMESTER –II) GENETICS (Mandatory) PLANT BREEDING AND TISSUE CULTURE

Marks 10	04 Credit Contact Hours-60	
UNIT	CONTENT	Hrs
1	Plant Breeding: History of plant breeding, Definition, Objectives,	15
	disciplines to be known by breeder (Botany of the crop, Cytogenetics,	
	agronomy, physiology, pathology, entomology, biochemistry,	
	bacteriology, statistics, plant biotechnology), Mode of reproduction in	
	crop plants.Diversity and origin of crop plants, Law of Homologous	
	variation, Plant genetic resources. Breeding methods for self-pollinated,	
	cross pollinated and clonally propagated crops (Recombinational and	
	transgressive breeding)	
2	Single seed descent.Populationsimprovement methods and	15
	maintenance, heterosis breeding and hybrid development, genetic basis	
	of heterosis. Ideotype breeding. Mutation breeding. Plant Breeding for	
	Stress Resistance and Nutritional Quality, Breeding for vertical and	
	horizontal resistance to diseases. Role of molecular markers in stress	
	resistance breeding: MAS, MARS and MABB.	
3	Plant regeneration pathways - Organogenesis and Somatic embryogenesis; Somaclonal Variation, Endosperm culture and triploid production; Anther and pollen culture, and production of haploid and	15
	doubled haploid plants; Protoplast culture and fusion, Somatic hybrids,	
	Micropropagation, Virus-free plants by meristem culture; Use of	
	somacional and gametocional variation for crop improvement	
1	In vitra mutagonosis and mutant solaction metabolic engineering for	15
-	n vito mutagenesis and mutant selection. Inclabolic eligilicening for	1.5
	production of secondary metabolites, Hairy root culture, Transgenic	
	crops for resistance against biotic and abiotic stresses; Transgenic	
	plants-Edible vaccine, Golden rice; Engineering crops for male sterility	

	and modification of flower colour, flowering, fruit ripening and		
	senescence; GM crops for nutritional quality and quantity; Molecular		
	pharming; Other applications; Global status and biosafety of transgenic		
	plants.		
REFERENCE BOOKS:			
1. Principles of Plant Breeding, Allard RW – Wiley			
2. Plant Breeding Theory and Practice, Stoskopf NC, Tomes DT and Christie BR – Westview			
Press			
3. Quantitative Genetics, Genomics and Plant Breeding, Kang MS – CABI Publishing			
4. Biotechi	nology- H.S. Chawla		
5. Plant Ce	lls in liquid culture (1991), Payne Shuler Hanser Publishers.		
6. Introduc	tion to plant tissue culture- M.K. Razdan		

7. Plant tissue culture-Theory & practice-S.S.Bhojwani& M.K. Razdan

8. Plant tissue culture-KalyankumarDey

About the course

Plant breeding techniques are used for creating variability, by breeding new plants from two different parents, or by causing mutations to occur. Plant Tissue culture is an important tool for both basic and applied aspects of plant biotechnology as well as its commercial applications. This technology exhibits several advantages over conventional propagation techniques.

Learning outcomes

After successfully completing the course,

- The students will be able to understand growth, reproduction, physiological and metabolic changes in plants.
- Able to learn about plant tissue culture in crop improvement. Know the applications various technologies in plant breeding and tissue culture

GENETICS (Mandatory) CONCEPT OF BIOCHEMISTRY

Marks100	A Credit Contact Hours-60	
UNIT	CONTENT	Hrs
1	Carbohydrates: Carbohydrate Classification, structureand functions, Glycolysis, Gluconeogenesis, TCA, HMP Shunt, Glycogen metabolism Oxidative phosphorylation, Structure of ATPase. Photosynthesis: Light Reaction, Calvin Cycle, HSK Pathway, CAM Pathway.	15
2	Proteins: Protein-Classification According to its function. Classification of amino acids. The primary, secondary and tertiary and quaternary structure of proteins. Enzymes: definition, enzyme classification, active site. Mechanism of enzyme action, Michaelis-Menten Equation, Linewever-Burk plot, Eadie-Hofstee plot, inhibition of enzymes.	15
3	Lipids: Lipids Classification, structure, and functions of fatty acids; Storage lipids Phospholipids, sphingolipids, steroids, Biosynthesis of fatty acids, Beta oxidation of fatty acid, Reactions of amino acid metabolism– transamination, deamination, Urea Cycle, Nucleotides, Purines and Pyrimidines, Nucleotide Biosynthesis –Salvage and De NOVO	15
4	Basics of Human Nutrition Energy metabolism and nutritional requirements of the body. Recommended daily allowance (RDA), Basic metabolic rate (BMR). Carbohydrates: Digestion of Simple and complex carbohydrates, dietaryfibre, absorption of glucose, Diabetes. Lipids: digestion, absorption, and transport, essential fatty acids (EFA). Cholesterol role in cardiovascular disease.	15
REFERENCE BOOKS: 1. Principles of Biochemistry-Lehningeretal.Freeman		
2. Biochem	istry-Devlin,T.M.Wiley-Liss	

3. Biochemical Calculation-Sehgal I.H.Wiley

- 4. 4FundamentalsofEnzymology-TPriceN.C.andLewisS.T OxfordUniversityPress
- 5. Biochemistry-TBerg, J.M. Tymoczko, J. Land Stryer L. TW. H. Freeman

6. Text book of biochemistry for Medical students –By D. M. Vasudevan, 6th edition, A jaypee publications.

About course

The course enlighten the students to acquire aspects of chemical processes occurring inside all living systems and gives information about vitamins, requirement of vitamins, bioenergetics, law of thermodynamics, oxidative phosphorylation, Photosynthesis. It helps students to understand basic and advanced principles of biochemistry, structure and properties of biomolecules.

Learning Outcomes

After successful completion of this course

- The students will be able to understand fundamental concepts of biochemistry, structure and function of biomolecules.
- They will get knowledge about electron transport chain, structure function of ATP synthase enzyme.
- They will be able to explain clinical applications of biochemistry.

GENETICS (Mandatory) REGULATION OF GENE EXPRESSION AND DEVELOPMENTAL GENETICS

Marks 50	2 Credit Contac	t Hours-30
UNIT	CONTENT	Hrs
1	Gene regulation in prokaryotes:	15
	Operon model of regulation (with examples of lac, trp.Control of lysis	
	and lysogeny in Lambda phage. Gene regulation in eukaryotes:	
	Overview of gene regulation using examples of galactose- utilization in	
	yeast.Transcriptional control – changes in chromatin structure,	
	epigenetics controls, Post transcriptional regulation - alternative RNA	
	splicing, RNA editing, RNA stability, Translational regulation - RNA	
	structure, control at initiation, codon usage, Post Translational	
	modification.	
2	Basic concepts in development:	15
	Potency, commitment, specification, induction, competence,	
	determination and differentiation; Production of gametes, cell surface	
	molecules in sperm egg recognition in animals; zygote formation,	
	cleavage, blastula formation, embryonic fields, gastrulation and	
	formation of germ layers in animals; embryo sac development and	
	double fertilization in plants; embryogenesis, establishment of symmetry	
	in plants; seed formation and germination. leaf and flower development	
DEFEDE	In Arabiaopsis inaliana.	
REFERE	NCE BOUKS:	
1. Genes a	nd Signals- Mark Ptashne and Alexander Gann CSHL Press	
2.A Geneti	ic Switch- Mark Ptashne CSHL Press	
3.Gene Re	gulation- David S Latchman Chapman & Hall	
4.Genes- E	Benjamin Lewin Prentice Hall	
5.Molecula	ar Cell Biology- Lodish, H. et al. W. H. Freeman	
6.Principle	es of Developmental Genetics, -Sally A. Moody Academic Press	
7.Advance	s in Anatomy, Embryology and Cell Biology, -Korf, HW., Beck, F., Clasc	:á, F.,
Haines, D.	E., Hirokawa, N., Putz, R., Timmermans, JP. Springer	
8.Develop	mental Biology- Gilbert S. F. Sinauer	
9.Develop	ment of Drosophila melanogaster (Vol I & II)- Bates and Arias CSHL Press	
10.Develop	pmental Biology, 1992 3rd edition, Browder L.W. Erickson C.A. & William	s,
R.J. Saund	ers College, Publications, London.	
11.Develo	pmental Biology; Patterns/Principles/Problems, 1982, Saunders J. W. Collie	er
MacMillar	n, Publishers, London.	
About the	course	

The study of this course will help to understand the process of activation, expression and termination of gene. The course gives an introduction to basic concepts and general principles in developmental biology, which also includes evolutionary relations. Moreover, the main features of the embryonic development of important animals and plants will be described to provide a basis for explaining the underlying control mechanisms.

Learning outcomes

After successfully completing the course,

- the students will able to gain subject knowledge which helpsstudents to describe two main strategies that cells used to control metabolism, able to explain adaptiveadvantage of bacterial genes grouped into an operon and distinguish between positive and negative control.
- Also able to explain differential gene expression, the characters of organism which make organism as ideal for developmental study and also able to explain developmental stages.

GENETICS (Elective II) ADVANCED MICROBIAL GENETICS

Marks 50	2 Credit	Contact	Hours-30
UNIT	CONTENT		Hrs
1	Bacterial Genetics: Conjugation: Discovery, interrupted matin	ng and	15
	temporal mapping, Hfr, Map of F plasmid, mechanism of chron	iosome	
	transfer in bacteria. Transformation: Biology and mechani	sm of	
	transformation, Competency, artificial induced competency- calci	um ion	
	induction and electroporation. Transduction: Virulent phage (1	(4) and	
	Temperate phage (lambda); Lytic and Tysogenic cycles, Generaliz	isted and	
	transduction machanism of concretized transduction	bortivo	
	transduction, incential mutagenesis: Method of isolation of auxo	trophic	
	mutants (histidine) drug resistant mutants (Strentomycin)	uopine	
2	Fungal Genetics and Application of Microbial genetics: Fung	gal life	15
	cycle and various phases, fungi in biotechnology, Yeast Mating	- Type	-
	Switching mechanism. Agricultural applications- Plant-n	nicrobe	
	interactions (PGPB, mycorrhizal symbiosis). Microbial associat	ion for	
	plant stress tolerance, rhizoremediation. Production and r	ole of	
	microbial genetics in crop improvement: bio-fertilizers, bio-insec	ticides,	
	bio-pesticides, Industrial applications- Industrial production of	lysine,	
DEEDE	glutamic acid.		
REFERE	NCE BOOKS:		
1. Microbi	al Genetics (1994) - Maloy S., Cronan J., Freifelder D, Jones and B	sertlett	
2. Fundam	ental Bacterial Genetics (2004) - Trun N and Trempy J, Blackwell	Publ.	
3. Modern	Microbial Genetics (2002)-Streips U. N. and Yasbin R.E., Wiley-L	Liss	
4 Molecula	ar Genetics of Bacteria (2003) -Sneider L. and Champness W. ASM	1 Publish	ers
5. Genetics	s of Bacteria -Scaife J., Academic Press		
About the	course		
Microbiol	consting provides nowerful tools for desinharing the regulation	n og r	vall as the
functional	and pathway organization of microbial cellular processes. Thi	is course	e introduces
students the	e past, current and future of microbial genetics; it teaches students vari	ous techn	iquesused in
microbial g	enetics; and enable students to understand the relevance of microbial gene	eticsin Ge	enetics.
Loomin-			
Learning 0	utcomes		

After successfully completing the course,

- The students will be able to presents logic and methods used in thegenetics of complex biological processes in bacteria.
- The course subject will cover various geneticapproaches to study bacterial mechanisms of metabolism, development and pathogenesis.

GENETICS (Elective-II) COMPUTATIONAL STRUCTURE BIOLOGY AND DRUG DESIGNING

UNITCONTENTHrs1Introduction to Structural and Pathway Databases: structural data, exploring the structural databases such as Protein Data Bank (PDB) at RCSB, Catalytic Site Atlas (CSA), Homology Derived Structures of Proteins (HSSP), Protein Data Bank Europe (PDBe), PDBeChem.If	
1Introduction to Structural and Pathway Databases: structural data, exploring the structural databases such as Protein Data Bank (PDB) at RCSB, Catalytic Site Atlas (CSA), Homology Derived Structures of Proteins (HSSP), Protein Data Bank Europe (PDBe), PDBeChem.15	
exploring the structural databases such as Protein Data Bank (PDB) at RCSB, Catalytic Site Atlas (CSA), Homology Derived Structures of Proteins (HSSP), Protein Data Bank Europe (PDBe), PDBeChem.	
RCSB, Catalytic Site Atlas (CSA), Homology Derived Structures of Proteins (HSSP), Protein Data Bank Europe (PDBe), PDBeChem.	
Proteins (HSSP), Protein Data Bank Europe (PDBe), PDBeChem.	
PDBeFold, PDBeMotiff, PDBeNMR, PDBSum, SCOP and CATH.	
Introduction to biological Pathway Databases. Structure Prediction	
Robson method Neural network method Position specific scoring	
matrices Motifs and domains folds and protein folding Homology	
Modeling: Introduction to homology modeling Fold recognition and	
Threading RNA structure prediction architectures and topologies of	
protein and DNA using molecular visualization software. Structure	
validation.	
2 Molecular interaction: Molecular interaction; protein-protein, protein-	
DNA, Protein- Lipid, Protein- Ligand, Protein-Carbohydrate, DNA-	
Drug interaction, Metalloproteins, Pi Pi interactions, C-HPi	
interactions.Drug Discovery and Drug designing: Natural products,	
drugs, principles of drug development, Drug discovery, mutation in drug	
targets, automated drug design, structure based and ligand based drug	
design methods, combinatorial chemistry, high throughput screening	
(H1S), in silicoADMET properties, QSAR, developing lead library,	
DOCKING; introduction to docking method to generate new structure,	
VI if MD suite virtual screening Drug metabolism: Cytochrome n450	
harmacodynamics and pharmacokinetics, clinical trials, EDA approval	
REFERENCE BOOKS .	
1. Wilkins, M.R., Williams, K.L., Appel, R.D., Hochstrasser, D.F. (Editors) 1997	
2. Proteome Research: New Frontiers in Functional Genomics. Springer Verlag Berlin	
Heidelberg.	
3. Baxevanis, A.D. and Francis Ouellette, B.F. 2004 Bioinformatics: A Practical Guide to the	
A Graur D and Li W H 2000 Fundamentals of Molecular Evolution SinguerAss USA	
5 Essential Bioinformatics JinXiong	
6 Rastogi S C. Mendiratta N. Rastogi P 2005 Bioinformatics methods and application	
Genomics, Proteomics, and Drug Discovery.	
7. Understanding Molecular Simulation: From Algorithms to Applications, Daan Frenkel and	
Berend Smit, Academic Press (2002).	
8. Computer Simulation of Liquids, M. P. Allen and D. J. Tildesley, Oxford University Press	
(1987).	
9. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Dominik Marx and	

JürgHutter, Cambridge University Press (2009).

About the Course

Computational Structural Biology aims at establishing biomolecular sequence-structure-function relations using fundamental principles of physical sciences in theoretical models and simulations of structure and dynamics. The most fundamental goal in drug design is to predict whether a given molecule will bind to a target and if so how strongly.

Learning outcomes

After successfully completing the course,

- The students will be able to establish bimolecular sequencestructure-function relations using fundamental principles of physical sciences in theoretical models and simulations of structure and dynamics;
- Students will gain knowledge regarding the interactions between protein-protein, protein-ligand and protein-DNA interactions and their functional implications

M. SC. - I - GENETICS (SEMESTER –II) GENETICS (Mandatory) PRACTICAL III PLANT BREEDING AND TISSUE CULTURE AND REGULATION OF GENE EXPRESSION

50 marks

2 Credit

Contact Hours-60

- 1. Induction of polyploidy using colchicines. (Root Tip)
- 1. Study of Pollen fertility
- 2. Media preparation and sterilization
- 3. Callus culture and Induction.
- 4. Isolation of protoplast by chemical and mechanical methods.
- 5. Synthetic seeds preparation
- 6. Study of Emasculation and hybridization techniques in any suitable plants.
- 7. Induction and assay of β galactosidase from *E.coli*.
- 8. Study of Floral patterning in any suitable flower.

GENETICS (Mandatory) PRACTICAL IV CONCEPTS OF BIOCHEMISTRY AND DEVELOPMENTAL GENETICS

50 marks

2 Credit

Contact Hours-60

- 1. Estimation of total sugar by Anthrone method
- 2. Estimation of protein by biuret method
- 3. Estimation of cholesterol by Zak's method
- 4. Determination of acid value, Iodine number, and saponification of fat/oil
- 5. Effect of Temperature on amylase enzyme activity
- 6. Effect of pH on amylase enzyme activity.
- 7. Study of Chick embryo development (preparation of whole mounts & permanent slides)
- 8. Observation of homeotic mutants of Drosophila

PRACTICAL ELECTIVE II ADVANCED MICROBIAL GENETICS

50 marks

2 Credit

Contact Hours-60

- 1. Study of gene transfer in bacteria by Conjugation
- 2. Study of gene transfer in bacteria by Transformation.
- 3. Ames test for detecting chemical carcinogen.
- 4. Isolation of vitamin B12 auxotrophic mutants.
- 5. Isolation and quantification of genomic DNA from bacteria.
- 6. Isolation and quantification of RNA from bacteria.
- 7. Isolation of Plasmid DNA from bacteria.

8. Isolation of Rhizobium from root nodule.

PRACTICAL ELECTIVE II COMPUTATIONAL STRUCTURE BIOLOGY AND DRUG DESIGNING

50 marks

2 Credit

Contact Hours-60

1. Accessing to Structural Databases and Data retrieval using RCSB PDB, CSA, PDBe, PDBeChem, PDBeFold, PDBeMotif, PdbSum.

- 2. Structural classification using CATH, SCOP resources.
- 3. Secondary structure prediction using SOPMA and GOR.
- 4. Homology modeling by SWISSMODEL, and Modeller 9V2 and
- 5. Model Validation using RAMPAGE or PROCHECK,
- 6. Prediction of protein-protein, protein-DNA, protein-ligand interactions and Drugbank and Chembank databases and Design of ligands using ACD lab and Chemsketch
- 7. Development of lead library and high throughput screening using in silicoADMET Properties.
- 8. Docking studies using AUTODOCK and HEX.

Walchand College of Arts and Science, Solapur M.Sc. Genetics Part-I Syllabus (NEP) Semester-II On Job Training/Field Project

Credits: 4	Contact Hours: 120
Note:	
1) OJT or Internship:	Credits for internship shall be one credit per one week or 120 hours of engagement. The internship shall be monitored jointly by the faculty and Industry/Organization Mentor
	OR
2) Field Project:	Students are expected to participate in field based learning/projects generally under the supervision of faculty. A minimum of 120 hours of learning activities/credit in a Semester is required.

Annexure: I

Walchand College of Arts and Science, (Autonomous) Solapur M. SC. Part – I Semester I & II Genetics (w.e.f. 2023-24)

Question Paper for Class Room Test (IE)

(02 Credit Theory Course)

Marks: 10

Q.No.1 Multiple choice questions	- 04 marks.
Q.No.2 Attempt any two	- 06 marks.

a)

b)

c)

Annexure: II

Walchand College of Arts and Science, (Autonomous) Solapur M. SC. Part – I Semester I & II Genetics (w.e.f. 2023-24)

Question Paper for Class Room Test (IE)

(<u>04 Credit</u> Theory Course)

Marks: 20

Q.No.1 Multiple choice questions	- 08 marks.
Q.No.2 Attempt any two	- 12 marks.
a)	
b)	
c)	

Annexure-III

Scheme of Marking for Internal Examination (IE) M. Sc. Part – I Semester I & II Genetics (w.e.f. 2023-24) (02 Credit Practical Course)

Tiı	me: 3 hours	Total Marks: 20
Q.1.	Proceed to perform	10
	OR	
Q.1.	Proceed to perform	10
Q.2.	Laboratory Record (Certified Journal)	05
Q.3.	Attendance	05

Annexure: IV

Walchand College of Arts and Science (Autonomous), Solapur Theory question paper Pattern for <u>4 credit</u> course as per NEP 2020 (ESE)

w. e. f. 2023-24

Examination:

Class: M.Sc. Subject: Time: 2.5 hrs Semester:

Paper: Marks: 60

Instructions:

1) All questions are compulsory

2) Figures to the right indicate full marks

3) Draw neat labelled drawings wherever necessary

Q. No.1	Rewrite the follo	owing sentences	by choosing co	orrect alternative giv	ven below 08
i)					
	a)	b)	c)	d)	
ii)					
iii)					
iv)					
v)					
vi)					
vii)					
viii)					
Q. No.2	Answer the follo	owing questions	(Any three)		12
i)			· · /		
ii)					
iii)					
iv)					
v)					
Q. No.3	Answer the follo	owing questions			12
i)		81			
ii)					
ÓR					
Q. No.3	Answer the follo	owing questions			12
i)		81			
ii)					
Q. No.4	Answer the follo	owing questions			12
i)					
ii)					
ÓR					
Q. No.4	Answer the follo	owing questions			12
i)		81			
ii)					
Q. No.5	Answer the follo	owing question			16
i)		U .			
ii)					

Annexure: V

Walchand College of Arts and Science (Autonomous), Solapur Theory question paper Pattern for <u>2 credit</u> course as per NEP 2020 (ESE) w. e. f. 2023-24

Examination:_____

Class: M.Sc. Subject: Time: 1.5 hrs Semester:

Paper: Marks: 30

 Instruction All q Figure Draw 	ions: juestions are comp res to the right ind v neat labelled dra	pulsory licate full marks wings wherever ne	ecessary		
Q. No.1	Rewrite the follo	wing sentences by	choosing cor	rect alternative given below	06
1)	a)	b)	c)	d)	
ii)	,	,	,	,	
iii)					
(v)					
vi)					
Q. No.2	Answer the follo	wing questions (A	ny three)		06
1) ii)					
iii)					
iv)					
Q. No.3	Answer the follo	wing questions			06
1) ii)					
,			OR		
Q. No.3	Answer the follo	wing questions			06
1) ii)					
O. No.4	Answer the follo	wing questions			06
i)		81			
ii)					
			OR		
Q. No.4	Answer the follo	wing questions	ÖN		06
i)					
11)					
O. No.5	Answer the follo	wing question			06
i)		01			

Annexure-VI

Scheme of Marking for End Semester Examination (ESE) (02 Credit Practical Course) Semester-I & II

Time: 3 hours

Total Marks: 30

15 15 15
15
15
15
15
15
05
05
05
03
05

BoS In Genetics

Chairman